In New Zealand white rabbits the right hind limb was immobilized in full extension with a plaster cast. The free left hind limb served as control. The masses of both the tetanic m. gastrocnemius and the tonic m. soleus considerably decreased as a consequence of immobilization for 5, 10, 14, 25 or 42 days. The decrease was more marked for the m. soleus. The water content of the muscle did not change substantially in the course of the atrophy. The total protein and myofibrillar protein contents of the immobilized muscles fell significantly. The tonic m. soleus atrophised sooner and was more extensive than the m. gastrocnemius. Superprecipitation of the myofibrillar proteins of the immobilized muscles decreased by 20-25% compared to the controls. The experimental model is considered suitable for further biochemical and ultrastructural investigations relating to the development of atrophy and to regeneration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hind limb
8
tonic soleus
8
immobilized muscles
8
experimental investigations
4
investigations hypokinesis
4
hypokinesis skeletal
4
skeletal muscles
4
muscles functions
4
functions changes
4
changes muscle
4

Similar Publications

Ledged Beam Walking Test Automatic Tracker: Artificial intelligence-based functional evaluation in a stroke model.

Comput Biol Med

January 2025

Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research (idiPAZ), (La Paz University Hospital- Universidad Autónoma de Madrid), Spain. Electronic address:

The quantitative evaluation of motor function in experimental stroke models is essential for the preclinical assessment of new therapeutic strategies that can be transferred to clinical research; however, conventional assessment tests are hampered by the evaluator's subjectivity. We present an artificial intelligence-based system for the automatic, accurate, and objective analysis of target parameters evaluated by the ledged beam walking test, which offers higher sensitivity than the current methodology based on manual and visual counting. This system employs a residual deep network model, trained with DeepLabCut (DLC) to extract target paretic hindlimb coordinates, which are categorized to provide a ratio measurement of the animal's neurological deficit.

View Article and Find Full Text PDF

This study investigates the effects of electrical stimulation (EMS) combined with strength training on lower limb muscle activation and badminton jump performance, specifically during the "jump smash" movement. A total of 25 male badminton players, with a minimum of three years of professional training experience and no history of lower limb injuries, participated in the study. Participants underwent three distinct conditions: baseline testing, strength training, and EMS combined with strength training.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.

Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.

View Article and Find Full Text PDF

Non-Intrusive Monitoring of Vital Signs in the Lower Limbs Using Optical Sensors.

Sensors (Basel)

January 2025

Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal.

Invisible health monitoring is currently a topic of global interest within the scientific community. Sensorization of everyday objects can provide valuable health information without requiring any changes in people's routines. In this work, a feasibility study of photoplethysmography (PPG) acquisition in the lower limbs for continuous and real-time monitoring of the vital signs, including heart rate (HR) and respiratory rate (RR), is presented.

View Article and Find Full Text PDF

: Medial arterial calcification (MAC), a distinct form of vascular pathology frequently coexisting with peripheral arterial disease (PAD), poses unique challenges in limb salvage among patients with diabetes, chronic kidney disease, and end-stage renal disease. This study examines the incidence of MAC and its impact on limb salvage outcomes over a decade of experience at a tertiary limb salvage center. : A retrospective review of all complex lower extremity (LE) reconstructions using local flap (LF) or free tissue transfer (FTT), performed from July 2011 to September 2022, was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!