Download full-text PDF

Source
http://dx.doi.org/10.1016/0002-8703(67)90012-9DOI Listing

Publication Analysis

Top Keywords

ventricular depolarization
4
depolarization sequence
4
sequence ventricular
4
ventricular repolarization
4
ventricular
2
sequence
1
repolarization
1

Similar Publications

Normothermic Crystalloid Polarizing Cardioplegia Improves Systolic and Diastolic Function in a Porcine Model of Cardiopulmonary Bypass.

Biomedicines

December 2024

Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria.

Previously, we showed that blood-based polarizing cardioplegia exerted beneficial cardioprotection during hypothermic ischemia; however, these positive effects of blood-based polarizing cardioplegia were reduced during normothermic ischemia compared to blood-based hyperkalemic (depolarizing) cardioplegia. This study compares crystalloid polarizing cardioplegia to crystalloid depolarizing cardioplegia in a normothermic porcine model of cardiopulmonary bypass; Methods: Twelve pigs were randomized to receive either normothermic polarizing ( = 7) or depolarizing ( = 5) crystalloid cardioplegia. After the initiation of cardiopulmonary bypass, normothermic arrest (34 °C, 60 min) was followed by 60 min of on-pump and 90 min of off-pump reperfusion.

View Article and Find Full Text PDF

Background And Objective: It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood.

Methods: Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA.

View Article and Find Full Text PDF

A Probabilistic Modeling Framework for the Prediction of Spontaneous Premature Beats and Reentry Initiation.

Heart Rhythm

January 2025

Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA. Electronic address:

Background: Spontaneously occurring life threatening reentrant arrhythmias result when a propagating premature beat encounters a region with significant dispersion of refractoriness. Although localized structural tissue heterogeneities and prescribed cell functional gradients have been incorporated into computational electrophysiological models, a quantitative framework for the evolution from normal to abnormal behavior that occurs via disease is lacking.

Objective: The purpose of this study was to develop a probabilistic modeling framework that represents the complex interplay of cell function and tissue structure in health and disease which predicts the emergence of premature beats and the initiation of reentry.

View Article and Find Full Text PDF

Background: Ventricular arrhythmia is a common type of arrhythmia observed in clinical practice. It is primarily characterized by premature ventricular contractions, ventricular tachycardia, and ventricular fibrillation. Abnormal formation or transmission of cardiac electrical impulses in patients affects cardiac ejection function.

View Article and Find Full Text PDF

Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).

Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!