Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-2836(67)90200-8DOI Listing

Publication Analysis

Top Keywords

conformational stability
4
stability dinucleotides
4
dinucleotides solution
4
conformational
1
dinucleotides
1
solution
1

Similar Publications

Disassembly of Virus-Like Particles and the Stabilizing Role of the Nucleic Acid Cargo.

J Phys Chem B

January 2025

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.

In many simple viruses and virus-like particles, the protein capsid self-assembles around a nucleic-acid genome. Although the assembly process has been studied in detail, relatively little is known about how the capsid disassembles, a potentially important step for infection (in viruses) or cargo delivery (in virus-like particles). We investigate capsid disassembly using a coarse-grained molecular dynamics model of a = 1 dodecahedral capsid and an RNA-like polymer.

View Article and Find Full Text PDF

Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.

Folia Microbiol (Praha)

January 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.

View Article and Find Full Text PDF

The B domain of protein A is a biotechnologically important three-helix bundle protein. It binds the Fc fragment of antibodies with helix 1/2 and the Fab region with helix 2/3. Here we designed a helix shuffled variant by changing the connectivity of the helices, in order to redesign the helix bundle, yielding altered helix-loop-helix properties.

View Article and Find Full Text PDF

Organisms from all kingdoms of life depend on Late Embryogenesis Abundant (LEA) proteins to survive desiccation. LEA proteins are divided into broad families distinguished by the presence of family-specific motif sequences. The LEA_4 family, characterized by 11-residue motifs, plays a crucial role in the desiccation tolerance of numerous species.

View Article and Find Full Text PDF

Tryptophan mannosylation, the covalent addition of an α-ᴅ-mannose sugar to a tryptophan side chain, is a post-translational modification (PTM) that can affect protein stability, folding, and interactions. Compared to other forms of protein glycosylation, it is relatively uncommon but is affected by conformational anomalies and modeling errors similar to those seen in N- and O-glycans in the Protein Data Bank (PDB). In this work, we report methods for detecting, building, and improving mannose structures linked to tryptophans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!