Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1176/ajp.124.3.404 | DOI Listing |
Chem Sci
January 2025
State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 P. R. China
In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
In an effort to improve safety and cycling stability of liquid electrolytes, the use of dicarbonates has been explored. In this study, four dicarbonate structures with varying end groups and spacers are investigated. The effect of these structural differences on the physical and ion transport properties is elucidated, showing that the end group has a significant influence on ion transport.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
The development of stable, high-performance electrolytes is essential to addressing the safety concerns and limited lifespan caused by the thermal and chemical instability of traditional organic carbonate-based electrolytes in lithium-ion batteries (LIBs). This study examined the potential of mixed solvent systems, specifically ethyl methyl carbonate (EMC) and tetramethylene sulfone (TMS), to modify ion solvation and improve ionic conductivity in LIB electrolytes. Through molecular dynamics simulations, we investigated the solvation structure and transport properties of lithium ions (Li) in these solvent environments.
View Article and Find Full Text PDFMolecules
January 2025
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow 119991, Russia.
In this study, the homogeneous carboxylation of potassium, sodium, and lithium phenolates in DMSO solution at 100 °C by the Kolbe-Schmitt reaction was investigated. The impact of water, phenolate concentration, and cation nature on the yield of products and reaction selectivity was demonstrated. Based on the patterns observed, it was concluded that a complex cluster mechanism governs the carboxylation reaction in the solution.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
An experimental investigation is conducted to identify the optimal blend of fluoroethylene carbonate (FEC), 3,3,3-trifluoropropylene carbonate (TFEC), and various fluorinated ethers, including 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (HFE), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), and bis(2,2,2-trifluoroethyl) ether (BTE), to enhance the performances of lithium-ion cells at high voltage. The cell incorporating TTE exhibits a significantly superior capacity for retention after long-term cycling at 4.5 V, which might be attributed to the improved kinetics of lithium ions and the generation of a thin, reliable, and inorganic-rich electrode-electrolyte interface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!