Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/o67-071 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
Polyimide (PI)-based gas separation membranes are of great interest in the field of H purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability.
View Article and Find Full Text PDFDalton Trans
January 2025
CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.
In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Water dynamics are investigated in binary osmolyte-water mixtures, exhibiting a microscopic heterogeneity driven by molecular aggregation, on the basis of molecular dynamics (MD) simulation studies. The protecting osmolyte TMAO molecules in solution are evenly dispersed without the formation of noticeable osmolyte aggregates, while the denaturant TMU molecules aggregate readily, generating microscopic heterogeneity in the spatial distribution of component molecules in TMU-water mixtures. A combined study of MD simulation with graph theoretical analysis and spatial inhomogeneity measurement with -values in the two osmolyte solutions revealed that the translational and rotational motions of water in the microheterogeneous environment of TMU-water mixtures are less hindered than those in the homogeneous media of TMAO-water mixtures.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Geology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.
View Article and Find Full Text PDFFront Surg
January 2025
Department of Surgery and Specialties, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon.
Objective: This study aimed to evaluate the efficacy and safety of bisphenol A-glycidyl methacrylate (bis-GMA) without UV light polymerization for the repair of refractory iatrogenic cerebrospinal fluid (CSF) leaks with large skull base defects.
Background: CSF leakage remains a common complication after neurosurgical interventions with a substantial resultant impact on morbidity and increased healthcare costs. The management of refractory CSF leaks with large skull base defects remains challenging.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!