Intracellular diffusion properties and enzyme activities in single living cells can be analysed by means of fluorogenic substrates that diffuse into the cells where they are converted into a fluorescent product by an enzymic reaction. The reaction-kinetic analysis of this process as a system of consecutive reactions provides information on the diffusion of the substrate into the cells, on intracellular enzyme activities and on the efflux of the fluorescent product. Separation of diffusion and enzyme-mediated processes is obtained by inducing specific changes of the cellular membrane using gramicidin D. A model for the functional interpretation of the experimental findings is proposed. Application of this method as a viability test for freshly prepared and frozen platelets is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01003822 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The photophysical properties of six new luminescent tetrahedral Zn(II) complexes are presented that survey two electronic donor moieties (phenolate and carbazolate) and three electronic acceptors (pyridine, pyrimidine, and pyrazine). A unique ligand based on an -terphenyl motif forms an eight-membered chelate, which enhances through-space charge-transfer (CT) interactions by limiting through-bond conjugation between the donor and acceptor. A single isomeric product was obtained in yields up to 90%.
View Article and Find Full Text PDFHeliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
Department of Medical Safety, Shizuoka General Hospital, Shizuoka, Japan.
Background: Falls in hospitalized patients are a serious problem, resulting in physical injury, secondary complications, impaired activities of daily living, prolonged hospital stays, and increased medical costs. Establishing a fall prediction scoring system to identify patients most likely to fall can help prevent falls among hospitalized patients.
Objectives: This study aimed to identify predictive factors of falls in acute care hospital patients, develop a scoring system, and evaluate its validity.
BMJ Open
December 2024
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Introduction: Obstructive sleep apnoea (OSA) is characterised by blood oxygen desaturations and sleep disruptions manifesting undesirable consequences. Existing treatments including oral appliances, positive airway pressure (PAP) therapy and surgically altering the anatomy of the pharynx have drawbacks including poor long-term adherence or often involving irreversible, invasive procedures. Bilateral hypoglossal nerve stimulation (HNS) is a new treatment for managing OSA, and this study is intended to determine whether an HNS system is a safe and effective treatment option for adults with OSA.
View Article and Find Full Text PDFBMC Nurs
January 2025
Department of Medical Nursing, Teda Health Science College, Gondar, Ethiopia.
Background: The issue of workplace violence (WPV) directed at nurses is a chronic and global public health concern. Numerous studies on workplace violence in Ethiopia have been conducted; however, the results have been inconsistent. The review aims to identify the pooled prevalence and associated factors of workplace violence against nurses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!