Download full-text PDF

Source

Publication Analysis

Top Keywords

[carrier state
4
state antibiotic-resistant
4
antibiotic-resistant staphylococcal
4
staphylococcal strains
4
strains children
4
children congenital
4
congenital heart
4
heart defects
4
defects hospital
4
hospital personnel]
4

Similar Publications

In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed with are badly effecting eco system and water bodies.

View Article and Find Full Text PDF

Matrix vesicle-inspired delivery system based on nanofibrous chitosan microspheres for enhanced bone regeneration.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.

Inspired by the initial mineralization process with bone matrix vesicles (MVs), this study innovatively developed a delivery system to mediate mineralization during bone regeneration. The system comprises nanofibrous chitosan microspheres (NCM) and poly (allylamine hydrochloride)-stabilized amorphous calcium phosphate (PAH-ACP), which is thereafter referred to as NCMP. NCM is synthesized through the thermal induction of chitosan molecular chains, serving as the carrier, while PAH-ACP functions as the mineralization precursor.

View Article and Find Full Text PDF

A strong n-type perovskite layer is crucial in achieving high open-circuit voltage (V) and power conversion efficiency (PCE) in the p-i-n solar cells, as the weak n-type perovskites result in a loss of V, and the p-type perovskites contain numerous electron traps that cause the severe carrier recombination. Here, three types of perylene diimide (PDI) based small molecule dopants with different dimensions, including 1D-PDI, 2D-PDI, and 3D-PDI are designed, to produce heavier n-type perovskites. The PDI-based molecules with Selenium atoms have a strong electron-donating ability, effectively enlarging the quasi-Fermi level splitting within the perovskites.

View Article and Find Full Text PDF

Nonfullerene acceptors with carbon-oxygen-bridged fused nonacyclic donor units enable efficient organic solar cells.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.

The power conversion efficiency (PCE) of an organic solar cell (OSC) mainly depends on the chemical structures and intrinsic properties of its active layer materials. The development of new nonfullerene acceptors (NFAs) has significantly boosted the PCEs of OSCs over the last decade. Herein, two carbon-oxygen-bridged fused nonacyclic donor units were developed to synthesize two NFAs, namely TTPIC-Ar and iTTPIC-Ar, respectively.

View Article and Find Full Text PDF

Reducing Nonradiative Recombination in Halide Perovskites through Appropriate Band Gaps and Heavy Atomic Masses.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Halide perovskite optoelectronic devices achieve high energy conversion efficiencies. However, their efficiency decreases significantly with an increase in temperature. This decline is likely caused by changes in nonradiative recombination and electron-phonon coupling, which remain underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!