The interaction of cytosine arabinoside (Ara-C) with human plasma proteins was investigated by means of ultrafiltration and ultracentrifugation. The results obtained with both methods did not differ significantly. Ara-C binding was studied at plasma levels within the therapeutic range (0.005-1.0 mg/l). It appeared that 13.3% (SD: 2.2%) of Ara-C in the plasma was bound to proteins. The percentage of bound drug was independent of the drug concentration, at least in the therapeutic range.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cytosine arabinoside
8
human plasma
8
plasma proteins
8
therapeutic range
8
arabinoside binding
4
binding human
4
plasma
4
proteins interaction
4
interaction cytosine
4
arabinoside ara-c
4

Similar Publications

This study employs mechanically synthesized nano-scrap carbon iron filings (nSCIF) as a cost-effective and sustainable catalyst in heterogeneous electro-Fenton process. The catalytic behaviour of nSCIF was studied for the oxidation of cytarabine (CBN) under the influence of various experimental parameters such as pH, catalyst dose and applied current density. The highest removal efficiency (~ 99%) was achieved in 90 min of reaction at pH 3, 0.

View Article and Find Full Text PDF

Background: Stromal-cell-derived factor 1 (SDF-1) plays a crucial role in hematopoiesis and has been implicated in acute myeloid leukemia (AML) pathogenesis. Understanding its relationship with chemotherapy outcomes could lead to improved therapeutic approaches for elderly AML patients.

Methods: This study retrospectively analyzed the medical records of elderly AML patients (n = 187) and compared serum SDF-1α levels with age-matched controls (n = 120).

View Article and Find Full Text PDF

Integrated Genomics Reveal Potential Resistance Mechanisms of PANoptosis-Associated Genes in Acute Myeloid Leukemia.

Mol Carcinog

January 2025

Institute of Precision Medicine, The First Affiliated Hospital; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Acute myeloid leukemia (AML) is marked by the proliferation of abnormal myeloid progenitor cells in the bone marrow and blood, leading to low cure rates despite new drug approvals from 2017 to 2018. Current therapies often fail due to the emergence of drug resistance mechanisms, such as those involving anti-apoptotic pathways and immune evasion, highlighting an urgent need for novel approaches to overcome these limitations. Programmed cell death (PCD) is crucial for tissue homeostasis, with PANoptosis-a form of PCD integrating pyroptosis, apoptosis, and necroptosis-recently identified.

View Article and Find Full Text PDF

Background: The treatment of relapsed/refractory T cell acute lymphoblastic leukemia (R/R T-ALL) is a significant challenge in hematologic oncology, and no standard salvage treatment plan exists. Both Chinese and international clinical guidelines recommend combination chemotherapy including venetoclax.

Methods: Efficacy and safety of venetoclax, azacitidine, homoharringtonine, cytarabine, and aclarubicin (VA-HAA) combination therapy were retrospectively analyzed in 3 patients with R/R T-ALL at the Department of Hematology, 920th Hospital of the Joint Logistics Support Force, Chinese People's Liberation Army.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!