Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplegacy.1966.210.5.1080DOI Listing

Publication Analysis

Top Keywords

denervation muscular
4
muscular dystrophy
4
dystrophy amino
4
amino acid
4
acid transport
4
transport skeletal
4
skeletal muscle
4
denervation
1
dystrophy
1
amino
1

Similar Publications

The maintenance of skeletal muscle quality involves various signal pathways that interact with each other. Under normal physiological conditions, these intersecting signal pathways regulate and coordinate the hypertrophy and atrophy of skeletal muscles, balancing the protein synthesis and degradation of muscle. When the total rate of protein synthesis exceeds that of protein degradation, the muscle gradually becomes enlarged, while when the total rate of protein synthesis is lower than that of protein degradation, the muscle shrinks.

View Article and Find Full Text PDF

[Effect of electroacupuncture on denervated skeletal muscle atrophy in rats based on p38 MAPK signaling pathway].

Zhongguo Zhen Jiu

January 2025

College of TCM, Chongqing Medical University, Chongqing Key Laboratory of TCM for Prevention and Treatment of Metabolic Diseases, Chongqing 410007, China.

Objective: To assess the impacts of electroacupuncture (EA) on the gait, oxidative stress, inflammatory reaction, and protein degradation in the rats of denervated skeletal muscle atrophy, and explore the potential mechanism of EA for alleviating denervated skeletal muscle atrophy.

Methods: Forty male SD rats, 8 weeks old, were randomly assigned to a sham-surgery group, a model group, an EA group, and a p38 MAPK inhibitor group, with 10 rats in each group. The right sciatic nerve was transected to establish a rat model of denervated skeletal muscle atrophy in the model group, the EA group and the p38 MAPK inhibitor group.

View Article and Find Full Text PDF

Edaravone promotes motoneuron survival and functional recovery after brachial plexus root avulsion and reimplantation in rats: Involvement of SIRT1/TFEB pathway.

Int Immunopharmacol

January 2025

Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China. Electronic address:

Background: Brachial plexu root avulsion (BPRA) commonly causes extensive motoneuron death, motor axon degeneration and denervation of biceps, leading to devastating motor dysfunction in the upper limb. Edaravone (Eda) has been proven to exert anti-oxidative and neuroprotective effects on various neurological disorders. Herein, we aimed to investigate the efficacy profile and potential mechanisms of Eda on BPRA in vitro and in vivo models.

View Article and Find Full Text PDF
Article Synopsis
  • Spinal muscular atrophy (SMA) is caused by a lack of survival motor neuron (SMN) protein, leading to the degeneration of lower motor neurons and muscle atrophy.
  • Early research in SMNΔ7 mice showed signs of motor dysfunction and myofiber changes before muscle denervation occurred, highlighting that SMN deficiency has direct effects on muscle cells.
  • The study revealed ultrastructural abnormalities in muscle fibers, including disruptions in the myofibrillar structure and altered mitochondrial dynamics, suggesting that muscle changes occur independently of motor neuron loss in SMA.
View Article and Find Full Text PDF

Background/objectives: The primary life-threatening complication in spinal-bulbar muscular atrophy (SBMA) is ventilatory failure. The present study analyzes the longitudinal patterns of respiratory function tests over a follow-up of 11 years.

Methods: We collected data from 9 genetically confirmed SBMA patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!