Download full-text PDF

Source

Publication Analysis

Top Keywords

opsonizing properties
4
properties horse
4
horse sera
4
sera opsonization
4
opsonization staphylococci
4
staphylococci staph
4
staph aureus
4
opsonizing
1
horse
1
sera
1

Similar Publications

The utilization of targeted nanoparticles as a selective drug delivery system is a powerful tool to increase the amount of active substance reaching the target site. This can increase therapeutic efficacy while reducing adverse drug effects. However, nanoparticles face several challenges: upon injection, the immediate adhesion of plasma proteins may mask targeting ligands, thereby diminishing the target cell selectivity.

View Article and Find Full Text PDF

Cyclic poly(2-methyl-2-oxazine) (-PMOZI) brush shells on Au nanoparticles (NPs) exhibit enhanced stealth properties toward serum and different cell lines compared to their linear PMOZI (-PMOZI) counterparts. While selectively recruiting immunoglobulins, -PMOZI shells reduce overall human serum (HS) protein binding and alter the processing of complement factor 3 (C3) compared to chemically identical linear shells. Polymer cyclization significantly decreases NP uptake by nonphagocytic cells and macrophages in both complement-deficient fetal bovine serum (FBS) and complement-expressing HS, indicating ineffective functional opsonization.

View Article and Find Full Text PDF

Human genetic variation reveals FCRL3 is a lymphocyte receptor for .

bioRxiv

December 2024

Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.

is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing).

View Article and Find Full Text PDF

Exploring structure-directed immunogenic cytotoxicity of arginine-rich peptides for cytolysis-induced immunotherapy of cancer.

Bioorg Med Chem

December 2024

Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Key Laboratory of Nano-Bio Interface, Chinese Academy of Sciences, Suzhou 215123, China. Electronic address:

The same cells can die with varied immunological consequences. For the purpose of cancer therapy, stronger immunogenic death of cancer cells is considered favorable. Membrane disruptive peptides are cytotoxic agents with tunable structures capable of not just killing heterogeneous cancer cells, but also inducing immunogenic death.

View Article and Find Full Text PDF

On the design of cell membrane-coated nanoparticles to treat inflammatory conditions.

Nanoscale Horiz

December 2024

LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.

Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!