By means of a medium containing dextran, nuclei were isolated in high yield from cells of Gymnodinium nelsoni, a marine dinoflagellate. Most of the DNA, but less than onetenth of the RNA, of the original cells was recovered in the purified nuclei. The nuclei appeared substantially intact as observed by light or electron microscopy. The isolated nuclei were capable of incorporating tritiated uridine triphosphate into material insoluble in cold acid. The general procedure was found to be applicable also to two species of diatoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.153.3744.1661 | DOI Listing |
Mar Pollut Bull
January 2025
College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China. Electronic address:
To fully understand variation in phytoplankton community structure in the Eastern Indian Ocean (EIO), two research cruises were carried out during September-November 2020, and March-May 2021. The phytoplankton community in the EIO was mainly composed of cyanobacteria and diatoms in 2020, cyanobacteria in 2021. Trichodesmium thiebaultii was the dominant specie in both years.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India.
Coastal deoxygenation impacts phytoplankton communities crucial for marine productivity. The inter- and intra-annual variability in phytoplankton communities at a shallow (27 m) station over the Western Indian Shelf (CaTS site, off Goa) during deoxygenation events of the late southwest monsoon (LSWM September-October) were studied from 2020 to 2023. The water column (0-27 m depth) experienced seasonal hypoxia/anoxia at subsurface depths (0-1.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China. Electronic address:
Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, 19958, USA.
Application of algicides produced by naturally occurring bacteria is considered an environmentally friendly approach to control harmful algal blooms. However, few studies assess the effects of bacterial algicides on non-target species, either independently or with other stressors. Here, we measured sub-lethal effects of dinoflagellate-specific algicide IRI-160AA on the estuarine fish Fundulus heteroclitus and Menidia menidia in laboratory experiments.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Chemical Oceanographic Division, CSIR-National Institute of Oceanography, Panaji, Goa, 403004, India.
In the present study, we investigated the dinoflagellate assemblages in the upper water column (< 150-m depth), focusing on the suboxic waters of the eastern Arabian Sea (EAS) along 68°E from 8°N to 21°N during the southwest monsoon 2020 (SWM-2020). Dinoflagellate abundance was higher in the upper water column (0-80-m depth, mean ± SD = 411 ± 903 cells L) compared to deeper waters (80-150-m depth, mean ± SD = 128 ± 216 cells L). Among 11 identified taxonomic dinoflagellate orders, Peridinales were predominant in the upper waters column (71%, mean ± SD = 285 ± 858 cells L).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!