Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/j100881a002 | DOI Listing |
Seizure
January 2025
Service and Laboratory of Clinical Pharmacology, University Hospital (CHUV) and Faculty of Biology and Medicine, Lausanne, Switzerland.
Introduction: Saliva is a promising option for therapeutic drug monitoring, with studies since the 1970s indicating a good correlation between plasma and saliva levels for early anti-seizure medications, although limited data exist for newer generation drugs.
Objectives: To evaluate the reliability and predictive power of saliva as a minimally invasive surrogate marker of plasma concentration for the routine therapeutic drug monitoring (TDM) of newer anti-seizure medications (ASM).
Methods: We collected blood samples at steady state in patients at least 6 h post-dose, paired with unstimulated saliva samples.
Biomacromolecules
January 2025
Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
Hydroxypropyl cellulose (HpC) forms a liquid crystalline phase and is thought to have a rod-like shape in aqueous solution. The viscoelastic behaviors of aqueous solutions of HpC samples with average molar substitution numbers ( ∼ 3.8) and weight-average molar masses ( = 36-740 kg mol) were examined over a wide concentration () range, and the results were discussed based on a concept of rod particle suspension rheology.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
Department of Mathematics, University of Trento, Trento, Italy.
The main objectives of this work are to validate a 1D-0D unsteady solver with a distributed stenosis model for the patient-specific estimation of resting haemodynamic indices and to assess the sensitivity of instantaneous wave-free ratio (iFR) predictions to uncertainties in input parameters. We considered 52 patients with stable coronary artery disease, for which 81 invasive iFR measurements were available. We validated the performance of our solver compared to 3D steady-state and transient results and invasive measurements.
View Article and Find Full Text PDFFluids Barriers CNS
December 2024
Department of Chemical Engineering and Materials Science, Wayne State University, 6135 Woodward Avenue, Rm 1413, Detroit, MI, 48202, USA.
Background: Hydrocephalus, an accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, is often treated via a shunt system to divert the excess CSF to a different compartment; if left untreated, it can lead to serious complications and permanent brain damage. It is estimated that one in every 500 people are born with hydrocephalus. Despite more than 60 years of concerted efforts, shunts still have the highest failure rate of any neurological device requiring follow-up shunt revision surgeries and contributing to the $2 billion cost of hydrocephalus care in the US alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!