Download full-text PDF |
Source |
---|
J Chem Phys
October 2024
Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
We have developed a computer code for the thermodynamic hierarchical equations of motion derived from a spin subsystem coupled to multiple Drude baths at different temperatures, which are connected to or disconnected from the subsystem as a function of time. The code can simulate the reduced dynamics of the subsystem under isothermal, isentropic, thermostatic, and entropic conditions. The extensive and intensive thermodynamic variables are calculated as physical observables, and Gibbs and Helmholtz energies are evaluated as intensive and extensive work.
View Article and Find Full Text PDFPhys Rev E
July 2024
School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea.
The conventional Langevin equation offers a mathematically convenient framework for investigating open stochastic systems interacting with their environment or a bath. However, it is not suitable for a wide variety of systems whose dynamics rely on the nature of the environmental interaction, as the equation does not incorporate any specific information regarding that interaction. Here, we present a stochastic differential equation (SDE) for an open system coupled to a thermostatic bath via an arbitrary interaction Hamiltonian.
View Article and Find Full Text PDFJACS Au
May 2024
Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química, UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián, Spain.
The study of ultrafast photoinduced dynamics of adsorbates on metal surfaces requires thorough investigation of laser-excited electrons and, in many cases, the highly excited surface lattice. While ab initio molecular dynamics with electronic friction and thermostats (, )-AIMDEF addresses such complex modeling, it imposes severe computational costs, hindering quantitative comparison with experimental desorption probabilities. In order to bypass this limitation, we utilize the embedded atom neural network method to construct a potential energy surface (PES) for the coadsorption of CO and O on Ru(0001).
View Article and Find Full Text PDFJ Chem Phys
May 2024
Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
In molecular dynamics simulations, dynamically consistent coarse-grained (CG) models commonly use stochastic thermostats to model friction and fluctuations that are lost in a CG description. While Markovian, i.e.
View Article and Find Full Text PDFEntropy (Basel)
March 2024
Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Avda. de Elvas s/n, E-06006 Badajoz, Spain.
The Boltzmann kinetic equation for dilute granular suspensions under simple (or uniform) shear flow (USF) is considered to determine the non-Newtonian transport properties of the system. In contrast to previous attempts based on a coarse-grained description, our suspension model accounts for the real collisions between grains and particles of the surrounding molecular gas. The latter is modeled as a bath (or thermostat) of elastic hard spheres at a given temperature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!