Glomerular basement membrane in diabetics.

Am J Clin Pathol

Published: January 1966

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcp/45.1.21DOI Listing

Publication Analysis

Top Keywords

glomerular basement
4
basement membrane
4
membrane diabetics
4
glomerular
1
membrane
1
diabetics
1

Similar Publications

Background: Alport syndrome (AS) is a genetically heterogeneous disorder resulting from variants in genes coding for the alpha-3/4/5 chains of Collagen IV, leading to defective basement membranes in the kidney, cochlea, and eye. The clinical manifestations of AS vary in patients. Cases of childhood AS caused by presenting primarily with nephrotic syndrome (NS) are rarely reported.

View Article and Find Full Text PDF

Engineered antigen-specific T regulatory cells suppress autoreactivity to the anti-glomerular basement membrane disease antigen.

Kidney Int

January 2025

Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia. Electronic address:

Anti-glomerular basement membrane (anti-GBM) disease is accompanied by insufficient antigen-specific T regulatory cells (Tregs) and clonally expanded antigen-specific T conventional cells (Tconvs). In particular, this applied to the immunodominant T cell auto- epitope of type IV collagen, α3(IV)NC1135-145 , presented by HLA-DR15. Here, we investigated whether Tregs engineered to express GBM-T cell receptors (TCR) specific for α3(IV)NC1135- 145 better suppress autoimmunity.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a vital organelle responsible for protein quality control, including the folding, modification, and transport of proteins. When misfolded or unfolded proteins accumulate in the ER, it triggers endoplasmic reticulum stress (ERS) and activates the unfolded protein response (UPR) to restore ER homeostasis. However, prolonged or excessive ERS can lead to apoptosis.

View Article and Find Full Text PDF

Case report: a rare concurrence of dense deposit disease in an adolescent patient with IgA nephropathy.

BMC Pediatr

January 2025

Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China.

Background: Dense deposit disease (DDD) is a rare renal disorder major affecting adolescents and children, characterized by an absence of distinctive clinical symptoms. Its coexistence with other renal conditions complicates both diagnosis and treatment in clinical practice.

Case Presentation: We described a 15-year-old male adolescent presenting with nephrotic syndrome as the initial manifestation, with urinalysis indicating significantly elevated protein and erythrocytes.

View Article and Find Full Text PDF

Genetic and clinical spectrum of steroid-resistant nephrotic syndrome with nuclear pore gene mutation.

Pediatr Nephrol

January 2025

Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.

Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.

Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!