Download full-text PDF |
Source |
---|
Adv Mater
January 2025
Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
Small high-performance energy modules have significant practical value in the biomedical field, such as painless diagnosis, alleviation of gastrointestinal discomfort, and electrical stimulation therapy. However, due to performance limitations and safety concerns, it is a formidable challenge to design a small, emerging ingestible power supply. Here, a fully ingestible supercapacitor (FISC) constructed of sargassum cellulose nanofiber is presented.
View Article and Find Full Text PDFAdv Skin Wound Care
January 2025
Keith Gordon Harding, Mb ChB, CBE, FRCGP, FRCP, FRCS, FLSW, is Professor Emeritus Cardiff University, Cardiff, Wales; Adjunct Professor Monash University Malaysia, Subang Jaya, Selangor, Malaysia; and Co-Founder and Editor in Chief of the International Wound Journal. Melissa Blow, BSc, is Principal Podiatrist, South East Wales Vascular Network, Aneurin Bevan University Health Board, Cardiff, Wales. Faye Ashton, BSc, is Vascular Research Nurse, Leicester Biomedical Research Centre, Glenfield University Hospital, Leicester, United Kingdom. David Bosanquet, MD, is Consultant Vascular Surgeon, South East Wales Vascular Network, Aneurin Bevan University Health Board. Acknowledgments: The authors acknowledge the assistance of Firstkind Ltd, Hawk House, Peregrine Business Park, Gomm Road, High Wycombe, United Kingdom HP13 7DL for sponsoring the study (grant ref: FSK-SPECKLE-001) and provided the NMES devices for the trial. Keith Harding has received payments for consulting work from Firstkind Ltd. The authors have disclosed no other financial relationships related to this article. Submitted November 28, 2023; accepted in revised form April 17, 2024.
Objective: To determine if intermittent neuromuscular electrostimulation (NMES) of the common peroneal nerve increases microvascular flow and pulsatility in and around the wound bed of patients with combined venous and arterial etiology.
Methods: Seven consenting participants presenting with mixed etiology leg ulcers participated in this study. Microvascular flow and pulsatility was measured in the wound bed and in the skin surrounding the wound using laser speckle contrast imaging.
Nat Commun
January 2025
State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China.
Electrostriction is an important electro-mechanical property in poly (vinylidene fluoride) (PVDF) films, which describes the proportional relation between the electro-stimulated deformation and the square of the electric field. Generally, traditional methods to improve the electrostriction of PVDF either sacrifice other crystalline-related key properties or only influence minimal regions around the surface. Here, we design a unique electret structure to fully exploit the benefits of internal crystal in PVDF films.
View Article and Find Full Text PDFZ Gastroenterol
January 2025
Klinik für Gastroenterologie, Hepatologie und Gastrointestinale Onkologie, München Klinik Bogenhausen, München, Deutschland.
High-frequency electrical stimulation therapy (gastric electrical stimulation, GES) is a treatment option for gastroparesis of various genesis. The best indication and prognostic parameters have not yet been conclusively determined.Retrospective analysis of all gastroparesis patients implanted with a GES device between 2011 and 2020.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.
Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!