Download full-text PDF

Source
http://dx.doi.org/10.1016/0926-6585(65)90174-3DOI Listing

Publication Analysis

Top Keywords

potassium cesium
4
cesium effects
4
effects sodium
4
sodium efflux
4
efflux oxygen
4
oxygen consumption
4
consumption muscle
4
muscle cells
4
potassium
1
effects
1

Similar Publications

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

Diverse Multinuclear Alkali Metallated (Li, Na, K, Rb, Cs) Family of the 1,3,5-tris-2-aminopyridyl-2,4,6-triethylbenzene Framework.

Chemistry

December 2024

Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, E-28805, Spain.

Literature on Group One organoelement chemistry is dominated by lithium, though sodium and potassium also feature prominently, whereas rubidium and caesium are rarely mentioned. With recent breakthroughs hinting that organoelement compounds of these two heavier metals can perform better than their lighter congeners in particular applications, important advantages could be missed unless complete sets of alkali metals are included in studies. Here, we report the synthesis and characterisation of a complete set of multi-alkali-metallated molecular compounds of the 1,3,5-tris[(4,6-dimethylpyridin-2-yl)aminomethyl]-2,4,6-triethylbenzene framework.

View Article and Find Full Text PDF

Inkjet-based facile fabrication of a copper ferrocyanide-embedded magnetic alginate microadsorbent for highly enhanced cesium removal.

Carbohydr Polym

January 2025

Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, 989-111 Daedukdaero, Yuseong, Daejeon 34057, Republic of Korea.

For the first time, simple and facile fabrication of a magnetic alginate microadsorbent via piezoelectric inkjet technology was developed for the selective removal of Cs via magnetic separation. Through the ejection of an alginate solution containing potassium ferrocyanide and magnetic nanoparticles (MNPs) into a Cu solution via an inkjet device, the fabrication of a copper ferrocyanide-embedded magnetic alginate microadsorbent (CuFC-MAM) with an average size of 39.38 μm was easily achieved in a one-pot fabrication process; here, the Cu ions acted as both a cross-linker for the gelation of alginate and a Cu source for the in situ synthesis of CuFC with potassium ferrocyanide.

View Article and Find Full Text PDF

After the Fukushima Daiichi nuclear accident, municipal solid waste (MSW) contaminated with radiocesium was generated. In Japan, approximately 80% of MSW by weight has been incinerated. As consequence, radiocesium was retained in incineration residue after the accident.

View Article and Find Full Text PDF

Interface engineering is the key to optimizing optoelectronic device performance, addressing challenges like reducing potential barriers, passivating interface traps, and controlling recombination of charges. Metal fluorides such as lithium fluoride are employed in interface modification within organic devices due to their strong dipole characteristics but carry health risks, high processing costs, and minimal impact on interface traps in organic electronics. Hence, this study investigates alternative metal chloride (MC) nanocrystals (sodium, cesium, rubidium, and potassium chlorides) that exhibit a strong dipole moment and are readily processable with the aim of reducing the influence of interface traps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!