Kameda, Mitsuo (Gunma University, Maebashi, Japan), Kenji Harada, Mitsue Suzuki, and Susumu Mitsuhashi. Drug resistance of enteric bacteria. V. High frequency of transduction of R factors with bacteriophage epsilon. J. Bacteriol. 90:1174-1181. 1965.-In the transduction of R factors with phage epsilon(15), a lysate capable of transducing the markers for (TC) or (CM.SM.SA) resistance at high frequency was obtained. The transducing agent is a defective element called epsilon(15)dR(23) which lacks certain functions of phage epsilon(15). After lysogenization with normal epsilon(15) phage and ultraviolet (UV) induction, strains carrying the epsilon(15)dR(23) element produce lysates which have a high frequency of transduction (HFT) on group E(1)Salmonella. Lytic lysates prepared on phage epsilon(15) sensitive strain with the epsilon(15)dR(23) element have a low frequency of transduction (LFT). Lytic growth of phage epsilon(34) on an epsilon(15)dR(23) strain or UV induction of an epsilon(34) lysogenic strain containing epsilon(15)dR(23) results in LFT lysates on group E(2)Salmonella. On UV induction, group E(2)Salmonella (epsilon(15) lysogens) with the epsilon(15)dR(23) element give lysates which are HFT on group E(1)Salmonella but are LFT when tested on group E(2)Salmonella. In all instances, the production of drug-resistant transductants requires infection of the cell with only a single epsilon(15)dR(23) element. It appears that the resistance region of the R factor has replaced that portion of phage genome which is essential for vegetative replication and superinfection immunity. The epsilon(15)dR(23) element does not contain the genetic determinants of the R factor responsible for transmissibility, inhibition of F mating, and interference between two R factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC315799PMC
http://dx.doi.org/10.1128/jb.90.5.1174-1181.1965DOI Listing

Publication Analysis

Top Keywords

epsilon15dr23 element
20
high frequency
16
frequency transduction
16
transduction factors
12
phage epsilon15
12
group e2salmonella
12
drug resistance
8
resistance enteric
8
enteric bacteria
8
bacteria high
8

Similar Publications

Kameda, Mitsuo (Gunma University, Maebashi, Japan), Kenji Harada, Mitsue Suzuki, and Susumu Mitsuhashi. Drug resistance of enteric bacteria. V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!