Download full-text PDF

Source
http://dx.doi.org/10.1021/ja01095a070DOI Listing

Publication Analysis

Top Keywords

synthesis spinochromes
4
synthesis
1

Similar Publications

Sea Urchin Pigments: Echinochrome A and Its Potential Implication in the Cytokine Storm Syndrome.

Mar Drugs

May 2021

Laboratorio de Química de Organismos Marinos, Instituto Patagónico del Mar, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn 9120, Chubut, Argentina.

: Echinochrome A (EchA) is a pigment from sea urchins. EchA is a polyhydroxylated 1,4-naphthoquinone that contains several hydroxyl groups appropriate for free-radical scavenging and preventing redox imbalance. EchA is the most studied molecule of this family and is an active principle approved to be used in humans, usually for cardiopathies and glaucoma.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is one of the most prevalent pathogens worldwide requiring the search for new candidates for the creation of antiherpetic drugs. The ability of sea urchin spinochromes-echinochrome A (EchA) and its aminated analogues, echinamines A (EamA) and B (EamB)-to inhibit different stages of HSV-1 infection in Vero cells and to reduce the virus-induced production of reactive oxygen species (ROS) was studied. We found that spinochromes exhibited maximum antiviral activity when HSV-1 was pretreated with these compounds, which indicated the direct effect of spinochromes on HSV-1 particles.

View Article and Find Full Text PDF

Polyhydroxylated naphthoquinones (PHNQs), known as spinochromes that can be extracted from sea urchins, are bioactive compounds reported to have medicinal properties and antioxidant activity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that pure echinochrome A exhibited a cytotoxic effect on Saos-2 cells in a dose-dependent manner within the test concentration range (15.625-65.

View Article and Find Full Text PDF
Article Synopsis
  • The Warburg effect describes how tumor cells consume high levels of sugar due to their reliance on glycolysis, even in the presence of oxygen.
  • Researchers have developed new sugar-based compounds, specifically designed to target this effect, which show promise in selectively killing prostate cancer cells, even those resistant to traditional drugs.
  • The mechanism of action involves disrupting mitochondrial function, leading to the activation of processes that induce apoptosis, paving the way for potential clinical development of these compounds.
View Article and Find Full Text PDF

Red spherule cells (RSCs) are considered one of the prime immune cells of sea urchins, but their detailed biological role during immune responses is not well elucidated. Lack of pure populations accounts for one of the major challenges of studying these cells. In this study, we have demonstrated that live RSCs exhibit strong, multi-colour autofluorescence distinct from other coelomocytes, and with the help of fluorescence-activated cell sorting (FACS), a pure population of live RSCs was successfully separated from other coelomocytes in the green sea urchin, Strongylocentrotus droebachiensis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!