Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02141877 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
Institute for High Energy Physics named by A.A. Logunov of NRC "Kurchatov Institute", Protvino, Russia.
Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Gulhane School of Medicine, Department of Obstetrics and Gynecology, Ankara, Turkey.
Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration - and possibly the occurrence - of deep-space missions.
View Article and Find Full Text PDFSci Total Environ
January 2025
Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands. Electronic address:
In this study, we compared the Sol-Char sanitation system with an Anaerobic Digestion (AD) system using Life Cycle Assessment (LCA) to evaluate their environmental impacts. Since both systems offer opportunities for human waste treatment and resource recovery, understanding their performance is crucial. This comparison aims to determine their environmental impacts while considering diverse factors, such as energy production and nutrient recovery.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Radiotherapy and Radiation Oncology, University Medical Center Rostock, Suedring 75, 18059 Rostock, Germany.
To enhance the treatment of tumors that are resistant to radio- and chemotherapy while minimizing the side effects of radiochemotherapy, researchers are continuously seeking new active compounds for use in combination with radiotherapy. Therefore, the aim of our study was to examine the cytotoxic and radiosensitizing effects of an extract from St. John's Wort (, referred to as HP01, on human epithelial tumor cells in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!