Download full-text PDF

Source

Publication Analysis

Top Keywords

[synchronization dna
4
dna synthesis
4
synthesis spleen
4
spleen cells
4
cells repeated
4
repeated contact
4
contact antigen]
4
[synchronization
1
synthesis
1
spleen
1

Similar Publications

Concise Overview of Methodologies Employed in the Study of Bacterial DNA Replication.

Int J Mol Sci

January 2025

Department of Bacterial Molecular Genetics, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.

DNA replication is a fundamental process in the cell on which the functioning of the entire cell as well as the maintenance of the entire species depends. This process is synchronized with all other processes within the cell as well as with external, environmental factors. This complex network of interconnections presents significant challenges in the field of DNA replication research, both in terms of identifying an appropriate approach to a question posed and in terms of methodology.

View Article and Find Full Text PDF

The kinetics of uracil-N-glycosylase distribution inside replication foci.

Sci Rep

January 2025

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic.

Mismatched nucleobase uracil is commonly repaired through the base excision repair initiated by DNA uracil glycosylases. The data presented in this study strongly indicate that the nuclear uracil-N-glycosylase activity and nuclear protein content in human cell lines is highest in the S phase of the cell cycle and that its distribution kinetics partially reflect the DNA replication activity in replication foci. In this respect, the data demonstrate structural changes of the replication focus related to the uracil-N-glycosylase distribution several dozens of minutes before end of its replication.

View Article and Find Full Text PDF

Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg, meanwhile the green emission of AgNCs increases synchronously.

View Article and Find Full Text PDF

Circulating Tumor DNA Detection for Recurrence Monitoring of Stage I Non-Small Cell Lung Cancer Treated With Microwave Ablation.

Thorac Cancer

January 2025

Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Purpose: As microwave ablation continues to be used in patients with inoperable stage I non-small cell lung cancer (NSCLC), it is particularly important to monitor efficacy. Whether plasma ctDNA detection can predict its efficacy should be illustrated.

Methods: We recruited 43 patients with inoperative stage I NSCLC, all of whom underwent biopsy-synchronous microwave ablation (MWA).

View Article and Find Full Text PDF

DNA supercoiling modulates eukaryotic transcription in a gene-orientation dependent manner.

bioRxiv

January 2025

Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France.

Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!