Heat inactivation at 56° for 30 min. failed to inactivate completely the causative agent of vervet monkey disease. Higher temperatures or longer periods are required to bring about complete inactivation. Ultraviolet light completely inactivates the agent. There is little if any loss of infectivity on storage at room temperature (+ 20°) + 4° and - 70° over a period of up to 5 weeks. Filters with an average porosity size of 100 mμ or less were required to produce non-infectious filtrates. The viricidal effects of a number of chemicals have been tested and chemotherapeutic studies have been carried out with a variety of antibiotics. Electron micrographs prepared from infected monkey blood reveal particles similar to those seen in monkey and guinea-pig tissue and tissue culture preparations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2072109 | PMC |
Mikrobiyol Bul
January 2025
Kocaeli Üniversitesi Tıp Fakültesi, Tıbbi Mikrobiyoloji Anabilim Dalı, Kocaeli.
Son yıllarda pandemi nedeniyle virüslerin tanı ve tedavisine yönelik terapötik yöntemlerin geliştirilmesi ve antivirallerin test edilmesi amacıyla çok sayıda in vitro çalışma yapılmaktadır. Literatürde SARS-CoV-2'nin modellenebilmesi için HCoV-229E'nin kullanımının güvenli ve yeterli olup olmadığını inceleyen çalışmalar sınırlıdır. Bu sebeple bu çalışmada, BSL-2 şartlarında gerçekleştirilebilen HCoV-229E kültürü ve kantitasyon çalışmalarının, BSL-3 şartları gerektiren SARS-CoV-2 deneylerinde bir ön çalışma modeli olup olamayacağının antiviral etkinlik analizleri üzerinden araştırılması amaçlanmıştır.
View Article and Find Full Text PDFTrop Biomed
December 2024
Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
Dengue, caused by the dengue virus (DENV), poses a significant global health challenge. Effective vaccines and treatments for dengue are lacking due to gaps in understanding its pathogenesis and mechanisms in severe cases. This study investigates the role of immunoglobulin E (IgE) in dengue, focusing on its potential association with virus neutralization and antibody-dependent enhancement (ADE) in DENV replication.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375, Wroclaw, Poland.
The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.
View Article and Find Full Text PDFViruses
January 2025
Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.
Lassa fever (LF), a viral hemorrhagic fever disease with a case fatality rate that can be over 20% among hospitalized LF patients, is endemic to many West African countries. Currently, no vaccines or therapies are specifically licensed to prevent or treat LF, hence the significance of developing therapeutics against the mammarenavirus Lassa virus (LASV), the causative agent of LF. We used in silico docking approaches to investigate the binding affinities of 2015 existing drugs to LASV proteins known to play critical roles in the formation and activity of the virus ribonucleoprotein complex (vRNP) responsible for directing replication and transcription of the viral genome.
View Article and Find Full Text PDFViruses
January 2025
Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
The ongoing monkeypox (mpox) disease outbreak has spread to multiple countries in Central Africa and evidence indicates it is driven by a more virulent clade I monkeypox virus (MPXV) strain than the clade II strain associated with the 2022 global mpox outbreak, which led the WHO to declare this mpox outbreak a public health emergency of international concern. The FDA-approved small molecule antiviral tecovirimat (TPOXX) is recommended to treat mpox cases with severe symptoms, but the limited efficacy of TPOXX and the emergence of TPOXX resistant MPXV variants has challenged this medical practice of care and highlighted the urgent need for alternative therapeutic strategies. In this study we have used vaccinia virus (VACV) as a surrogate of MPXV to assess the antiviral efficacy of combination therapy of TPOXX together with mycophenolate mofetil (MMF), an FDA-approved immunosuppressive agent that we have shown to inhibit VACV and MPXV, or the N-myristoyltransferase (NMT) inhibitor IMP-1088.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!