Download full-text PDF |
Source |
---|
Quant Plant Biol
September 2024
Department of Life Sciences, Imperial College London, London, UK.
In this work, we present a quantitative comparison of the cell division dynamics between populations of intact and regenerating root tips in the plant model system To achieve the required temporal resolution and to sustain it for the duration of the regeneration process, we adopted a live imaging system based on light-sheet fluorescence microscopy, previously developed in the laboratory. We offer a straightforward quantitative analysis of the temporal and spatial patterns of cell division events showing a statistically significant difference in the frequency of mitotic events and spatial separation of mitotic event clusters between intact and regenerating roots.
View Article and Find Full Text PDFQuant Plant Biol
December 2024
Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany.
Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
December 2024
Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
(), a periodontal pathogen, has been implicated in the impairment of anti-tumor responses in colorectal cancer (CRC). The tumor microenvironment in CRC involves tumor-associated macrophages (TAMs), which are pivotal in modulating tumor-associated immune responses. The polarization of TAMs towards an M2-like phenotype promotes CRC progression by suppressing the immune system.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Korea.
Interferon gamma (IFNγ) is well-known for its ability to stimulate immune cells in response to pathogen infections and cancer. To develop an effective cancer therapeutic vaccine, CT26 colon carcinoma cells were genetically modified to express IFNγ either as a secreted form (sIFNγ) or as a membrane-bound form. For the membrane-bound expression, IFNγ was fused with Fas (mbIFNγ/Fas), incorporating the extracellular cysteine-rich domains, transmembrane, and cytoplasmic domains of Fas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!