In order to analyze the energetics of active transport, a hypothetical carrier model is considered in which the active transport process is reduced to a minimal number of elementary steps. The relation between the following three quantities is examined: The affinity of the reaction driving the active transport, the ratio of isotope fluxes between identical solutions ("short-circuit"), and the maximal chemical potential difference which the active transport system can maintain. The interdependence of isotopeinteraction and the degree of coupling between transport and chemical reaction is shown explicitly: when the transport and chemical reaction are completely coupled, there is marked isotope interaction. In general, the logarithm of the short-circuit flux ratio (multiplied by RT) and the maximal chemical potential are not equal. The two quantities are approximately equal, when coupling between metabolism and transport is very loose, or when the reaction step is much faster than the transfer of the adsorbed solute across the barrier. Without prior knowledge of the kinetic parameters of the carrier, the maximal potential and the dependence of the metabolic reaction on solute flow have to be measured in order to derive the affinity of the driving reaction. Measurement of the flux ratio in the same system will then yield independent information on the carrier mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367577 | PMC |
http://dx.doi.org/10.1016/S0006-3495(69)86395-2 | DOI Listing |
Dalton Trans
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China.
Non-precious transition metal-based electrocatalysts with high activities are promising candidates for substituting Pt- or Ru-based electrocatalysts in hydrogen evolution. In this study, we propose core-shell engineering to combine the amorphous NiCoP and crystalline CoP (a-NiCoP/CoP@NF), which requires an ultra-low overpotential of only 26 mV to achieve the benchmark current density of 10 mA cm. Furthermore, it achieves an industrial-level hydrogen evolution current density of 500 mA cm with excellent stability.
View Article and Find Full Text PDFChemSusChem
January 2025
Leiden University: Universiteit Leiden, Leiden Institute of Chemistry, Einsteinweg 55, Room number EE4.19, 2333 CC, Leiden, NETHERLANDS, KINGDOM OF THE.
Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.
Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas, Brazil.
Water is a fundamental component of life, playing a critical role in regulating metabolic processes and facilitating the dissolution and transport of essential molecules. However, emerging contaminants, such as pharmaceuticals, pose significant challenges to water quality and safety. Nanomaterial-based technologies emerge as a promising solution for removing those contaminants from water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!