The activity of papain in the crystalline state.

Biochim Biophys Acta

Published: February 1969

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2744(69)90161-2DOI Listing

Publication Analysis

Top Keywords

activity papain
4
papain crystalline
4
crystalline state
4
activity
1
crystalline
1
state
1

Similar Publications

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Effects of enzymolysis by seven proteases (Alcalase, Bromelain, Flavourzyme, Papain, Pepsin, Protamex, and Trypsin) with distinct cleavage specificities on the emulsification performance of hempseed protein (HPI) and its correlation with the structural and interfacial characteristics were explored in this study. Upon enzymolysis, a remarkable decrease in α-helix and β-turn was observed in resultant hydrolysates (HPH), accompanied by a rise in β-sheet and random coil, notably by Alcalase, Bromelain, Papain, and Trypsin. Overall, proteolysis led to noticeable reductions in surface hydrophobicity and total sulfhydryls as well as a redshift in intrinsic fluorescence, with Papain showing the most pronounced effects, possibly due to its higher hydrolysis degree (4.

View Article and Find Full Text PDF

Structural insights into the role of the prosegment binding loop in a papain-superfamily cysteine protease from Treponema denticola.

Acta Crystallogr F Struct Biol Commun

February 2025

Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.

Periodontal diseases afflict 20-50% of the global population and carry serious health and economic burdens. Chronic periodontitis is characterized by inflammation of the periodontal pocket caused by dysbiosis. This dysbiosis is coupled with an increase in the population of Treponema denticola, a spirochete bacterium with high mobility and invasivity mediated by a number of virulence factors.

View Article and Find Full Text PDF

Applications of Machine Learning Approaches for the Discovery of SARS-CoV-2 PLpro Inhibitors.

J Chem Inf Model

January 2025

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland 20850, United States.

The global impact of SARS-CoV-2 highlights the need for treatments beyond vaccination, given the limited availability of effective medications. While Pfizer introduced , an FDA-approved antiviral targeting the SARS-CoV-2 main protease (Mpro), this study focuses on designing new antivirals against another protease, papain-like protease (PLpro), which is crucial for viral replication and immune suppression. NCATS/NIH performed a high-throughput screen of ∼15,000 molecules from an internal molecular library, identifying initial hits with a 0.

View Article and Find Full Text PDF

The SARS-CoV-2 papain-like protease PLpro has multiple roles in the viral replication cycle, related to both its polypeptide cleavage function and its ability to antagonize the host immune response. Targeting the PLpro function is recognized as a promising mechanism to modulate viral replication, while supporting host immune responses. However, the development of PLpro-specific inhibitors remains challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!