Download full-text PDF

Source

Publication Analysis

Top Keywords

method simultaneous
4
simultaneous cannulation
4
cannulation major
4
major splanchnic
4
splanchnic blood
4
blood vessels
4
vessels sheep
4
method
1
cannulation
1
major
1

Similar Publications

Pneumonia is a prevalent acute respiratory infection and a major cause of mortality and hospitalization, and the urgent demand for a rapid, direct, and highly accurate diagnostic method capable of detecting both () and () arises from their prominent roles as the primary pathogens responsible for pneumonia. Herein, two luminescent iridium complexes with nonoverlapping photoluminescence spectra, iridium(III)-bis [4,6-(difluorophenyl)-pyridinato-N,C'] picolinate (abbreviated as Ir-B) and bis (2-(3,5- dimethylphenyl) quinoline-C2,N') (acetylacetonato) iridium(III)) (abbreviated as Ir-R), were unprecedently proposed to construct a novel wavelength-resolved magnetic multiplex biosensor for simultaneous detection of and based on catalytic hairpin assembly (CHA) signal amplification strategy combined with dye-doped silica nanoparticles. Notably, the proposed wavelength-resolved multiplex biosensor not only exhibits a broad linear range from 50 pM to 10 nM but also demonstrates excellent recovery rates for (96.

View Article and Find Full Text PDF

The transcription factor TCF4 regulates the miR-494-3p/THBS1 axis in the fibrosis of pathologic scars.

Arch Dermatol Res

January 2025

Medical Intensive Care Unit, Zhangzhou Hospital Affiliated of Fujian Medical University, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou City, Fujian Province, China.

Background: The fibrosis of pathologic scar (PS) is formed by the excessive deposition of extracellular matrix, resulting in an abnormal scar. Recent clinical tests have indicated that the regulation of PS fibroblast cells (PSF cells) proliferation can serve as an intervention measure for PS. Our work aimed to elucidate the specific mechanism of action of TCF4 on the progression of PS fibrosis.

View Article and Find Full Text PDF

Reduction of ischemic time using the pull-through technique for scapular free flap.

Oral Maxillofac Surg

January 2025

Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.

Purpose: Current scapular free flap (SFF) harvest in mandibular reconstruction often requires repositioning, hindering simultaneous harvest and resection and potentially increasing ischemic time. This study evaluated the efficacy of the pull-through technique (PTT) for SFF harvest, aiming to reduce ischemic time during mandibular segmental resection.

Methods: A retrospective analysis was conducted on 24 patients who underwent mandibular reconstruction using SFF at two maxillofacial surgery departments between January 2015 and May 2022.

View Article and Find Full Text PDF

High-resolution awake mouse fMRI at 14 tesla.

Elife

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, United States.

High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts.

View Article and Find Full Text PDF

Background: Phenotyping Alzheimer's Disease (AD) can be crucial to providing personalized treatment. Several studies have analyzed the use of digital biomarkers to characterize a subject's behavior, usually obtained from a single modality, such as speech. However, combining several modalities in a single study has not been deeply studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!