Download full-text PDF |
Source |
---|
Int J Mol Sci
January 2025
Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy.
Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.
View Article and Find Full Text PDFRadiother Oncol
January 2025
Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, United States. Electronic address:
Background: Re-irradiation in radiotherapy presents complexities that require dedicated tools to generate optimal re-treatment plans. This study presents a robust workflow that considers fractionation size, anatomical variations between treatments, and cumulative bias doses to improve the re-irradiation planning process.
Methods: The workflow was automated in MIM® Software and the Elekta© Monaco® treatment planning system.
Curr Oncol
January 2025
Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy.
Pancreatic cancer (PC) is one of the most aggressive and lethal malignancies, calling for enhanced research. Pancreatic ductal adenocarcinoma (PDAC) represents 70-80% of all cases and is known for its resistance to conventional therapies. Carbon-ion radiotherapy (CIRT) has emerged as a promising approach due to its ability to deliver highly localized doses and unique radiobiological properties compared to X-rays.
View Article and Find Full Text PDFRadiat Res
January 2025
Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6 Canada.
Ionizing radiation exposure during perinatal development can produce various biological effects on the developing offspring. These effects are dependent on a number of factors, including total dose, dose rate and the developmental processes occurring at the time of irradiation. The present study conducted an analysis of historical radiobiological archived data involving 60Co-gamma irradiation of beagle dogs at specific periods of prenatal or postnatal development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!