Download full-text PDF |
Source |
---|
PLoS One
January 2025
School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea.
The oxidation states of vanadium determine its mobility and toxicity, and dissimilatory vanadate reduction has been reported in several microorganisms, highlighting the potential significance of this pathway in the remediation of vanadium contamination and the biogeochemical cycle. However, to date, most known microorganisms capable of reducing vanadate are Gram-negative respiratory bacteria belonging to the phylum Proteobacteria. In this study, we isolated Tepidibacter mesophilus strain VROV1 from deep-sea sediments on the northern Central Indian Ridge and investigated its ability to reduce vanadium and the impact of vanadate on its cellular metabolism.
View Article and Find Full Text PDFQ Rev Biophys
October 2024
Department of Physical and Biocoordination Chemistry, Medical University of Lodz, Lodz, Poland.
The aim of this review is to summarize the progress made in the determination of the protonation constants of biologically active ligands: endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solutions using different experimental techniques. The knowledge of the protonation constants of the aforementioned ligands is crucial for the determination of the equilibrium constants of complex formation and thus for the understanding of complex biological reactions such as transamination, racemization, and decarboxylation. Thus, the protonation constants of ligands are a measure of their ability to form complexes with metal ions.
View Article and Find Full Text PDFBiology (Basel)
August 2023
Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA.
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
September 2022
Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Department of Biochemistry, Saveetha University, 600 077 Chennai, India.
Background: Animal-fats are rich in long-chain saturated fatty-acids, well known to induct diabetic distress among ingested insulin-insensitive individuals. In the current-study, bovine-fat was fed to selective mice breeds highly sensitized to heavy dietary lipid load.
Methods: The later high fat diet (HFD) group indeed undergone diabetic-onset within weeks with a drastically altered feed-behavior pattern.
J Nanobiotechnology
March 2022
MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
Selenium nanoparticles (SeNPs) have attracted considerable attention globally due to their significant potential for alleviating abiotic stresses in plants. Accordingly, further research has been conducted to develop nanoparticles using chemical ways. However, our knowledge about the potential benefit or phytotoxicity of bioSeNPs in rapeseed is still unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!