Download full-text PDF

Source

Publication Analysis

Top Keywords

[the excretion
4
excretion 17-ketosteroids
4
17-ketosteroids adaptation
4
adaptation phase
4
phase stimulating
4
stimulating climate
4
climate influence
4
influence cold
4
cold sea
4
sea baths]
4

Similar Publications

Methanogenic archaea (methanogens) possess fascinating metabolic characteristics, such as the ability to fix molecular nitrogen (N). Methanogens are of biotechnological importance due to the ability to produce methane (CH) from molecular hydrogen (H) and carbon dioxide (CO) and to excrete proteinogenic amino acids. This study focuses on analyzing the link between biological methanogenesis and amino acid excretion under N-fixing conditions.

View Article and Find Full Text PDF

This paper describes the design, development, synthesis, in silico, and in vitro evaluation of fourteen novel heterocycle hybrids as inhibitors of the α-glucosidase enzyme. The primary aim of this study was to explore the potential of novel pyrazole-phthalazine hybrids as selective inhibitors of α-glucosidase, an enzyme involved in carbohydrate metabolism, which plays a key role in the management of type 2 diabetes. The rationale for this study stems from the need for new, more effective inhibitors of α-glucosidase with improved efficacy and safety profiles compared to currently available therapies like Acarbose.

View Article and Find Full Text PDF

Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([C]-tanimilast: 18.

View Article and Find Full Text PDF

Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone.

Drug Metab Dispos

January 2025

Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan.

Pirfenidone (PIR) is used in the treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver.

View Article and Find Full Text PDF

Hypointense Findings on Hepatobiliary Phase MR Images.

Radiographics

February 2025

From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.).

Hepatobiliary (HB) contrast agents are increasingly valuable diagnostic tools in MRI, offering a wider range of applications as their clinical use expands. Normal hepatocytes take up HB contrast agents, which are subsequently excreted in bile. This property creates a distinct HB phase providing valuable insights into liver function and biliary anatomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!