Ethanol has been shown to aggravate the blood-brain barrier (BBB) dysfunction in cerebral trauma and in cerebral gas embolism, possibly by changing the endothelial cell membrane. No difference in protein extravasation was found between intoxicated and control rats under nitrous oxide anesthesia after the injection of bicuculline, a drug that hemodynamically gives rise to high blood pressure in combination with cerebral vasodilatation. In contrast there was a statistically significant increase in protein leakage in conscious intoxicated rats. The fact that ethanol increased the vulnerability only in conscious rats might indicate that nitrous oxide and ethanol have a common effect on the endothelial cell membranes or that nitrous oxide neutralizes an action of ethanol. Protein leakage induced by acute hypertension is more severe in rats anesthetized with nitrous oxide than in conscious rats, a difference that might to some extent be related to an effect of nitrous oxide on the endothelial cells. Further studies are needed to evaluate the influence of ethanol and nitrous oxide on the endothelial cell membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0404.1978.tb02897.x | DOI Listing |
Neuropsychopharmacology
January 2025
Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK.
There is an ongoing need to identify novel pharmacological agents for the effective treatment of depression. One emerging candidate, which has demonstrated rapid-acting antidepressant effects in treatment-resistant groups, is nitrous oxide (NO)-a gas commonly used for sedation and pain management in clinical settings and with a range of pharmacological effects, including antagonism of NMDA glutamate receptors. A growing body of evidence suggests that subanaesthetic doses of NO (50%) can interfere with the reconsolidation of maladaptive memories in healthy participants and across a range of disorders.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:
Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.
Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .
View Article and Find Full Text PDFWater Res X
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
The biological nitrogen removal process in wastewater treatment inevitably produces nitrous oxide (NO), a potent greenhouse gas. Coarse bubble mixing is widely employed in wastewater treatment processes to mix anoxic tanks; however, its impacts on NO emissions are rarely reported. This study investigates the effects of coarse bubble mixing on NO emissions in a pilot-scale mainstream nitrite shunt reactor over a 50-day steady-state period.
View Article and Find Full Text PDFNew Phytol
January 2025
Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
Recent studies have shown that stem fluxes, although highly variable among trees, can alter the strength of the methane (CH) sink or nitrous oxide (NO) source in some forests, but the patterns and magnitudes of these fluxes remain unclear. This study investigated the drivers of subdaily and seasonal variations in stem and soil CH, NO and carbon dioxide (CO) fluxes. CH, NO and CO fluxes were measured continuously for 19 months in individual stems of two tree species, Eperua falcata (Aubl.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!