Download full-text PDF |
Source |
---|
Nanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Electroluminescent (EL) devices consisting of a single metal-semiconductor contact and a gate effect structure have garnered significant attention in the field of perovskite light-emitting devices. This interest is largely due to the thermal stability of the active layer and the simplicity of the device structure. However, the application of these devices in large-area light-emitting applications is hindered by the inherently low carrier mobility in perovskite materials.
View Article and Find Full Text PDFHeliyon
January 2025
A. K. M. Masud, Department of Industrial and Production Engineering (IPE), Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh.
Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, School of Sciences and Humanities, SR University, Warangal, Telangana, 506371, India.
High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Marin Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, P. R. China.
Altering the generation route of reactive species is a potent means to augment the photocatalytic activity. In this study, MoS/MIL-101(Fe) S-scheme heterojunction (MF2) is prepared using a water/solvent thermal method for photocatalytic degradation of chlorsulfuron. Driven by the internal electric field, the local electron density of MF2 is redistributed, thus enhancing the adsorption of O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!