1. Heat-inactivation experiments, ammonium sulphate-fractionation studies, enzyme-inhibition studies with S-(alphabeta-diethoxycarbonylethyl)glutathione, and evidence from the distribution of activities in rat liver, in rat kidney and in the livers of other animals, indicate that reactions of glutathione with (i) trans-benzylideneacetone, (ii) cyclohex-2-en-1-one, (iii) trans-cinnamaldehyde, (iv) diethyl maleate, (v) diethyl fumarate and (vi) 2,3-dimethyl-4-(2-methylenebutyryl)phenoxyacetic acid are catalysed by different enzymes. 2. Evidence is presented that the enzymes catalysing the reactions of glutathione with substrates (i)-(iv) are different from glutathione S-alkyltransferase, S-aryltransferase and S-epoxidetransferase. 3. The name ;glutathione S-alkenetransferases' is proposed for enzymes catalysing reactions of glutathione with alphabeta-unsaturated compounds. 4. The Arrenhius plot for the enzyme-catalysed reaction of diethyl maleate with glutathione is discontinuous, with lower energy of activation at 38 degrees .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1186951 | PMC |
http://dx.doi.org/10.1042/bj1090651 | DOI Listing |
Fish Shellfish Immunol
December 2024
Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China; Dalian Jinshiwan Laboratory, Dalian, China. Electronic address:
A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea. Electronic address:
Meticulous and bespoke fabrication of structural materials with simple yet innovative outlines along with on-demand availability is the imperative aspiration for numerous fields. The alliance between nanotechnology and enzymes has led to the establishment of an inimitable and proficient class of materials. With the advancement in the field of additive manufacturing, the fabrication of some complex biological architects is achievable with similitude to the instinctive microenvironment of the biological tissue.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFInorg Chem
December 2024
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
Nitrogenase is the enzyme primarily responsible for reducing atmospheric nitrogen to ammonia. There are three general forms of nitrogenase based on the metal ion present in the cofactor binding site, namely, molybdenum-dependent nitrogenases with the iron-molybdenum cofactor (FeMoco), the vanadium-dependent nitrogenases with FeVco, and the iron-only nitrogenases. It has been shown that the vanadium-dependent nitrogenases tend to have a lesser efficacy in reducing dinitrogen but a higher efficacy in binding and reducing carbon monoxide.
View Article and Find Full Text PDFFEBS J
December 2024
Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China.
Catechol-O-methyltransferase (COMT, EC 2.1.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!