Download full-text PDF

Source

Publication Analysis

Top Keywords

pyrolysis caffeic
4
caffeic acid
4
acid tobacco
4
tobacco leaf
4
leaf constituent
4
pyrolysis
1
acid
1
tobacco
1
leaf
1
constituent
1

Similar Publications

Colorimetric sensor array for identifying antioxidants based on pyrolysis-free synthesis of Fe-N/C single-atom nanozymes.

Talanta

November 2024

Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, 610039, PR China. Electronic address:

Iron-anchored nitrogen/doped carbon single-atom nanozymes (Fe-N/C), which possess homogeneous active sites and adjustable catalytic environment, represent an exemplary model for investigating the structure-function relationship and catalytic activity. However, the development of pyrolysis-free synthesis technique for Fe-N/C with adjustable enzyme-mimicking activity still presents a significant challenge. Herein, Fe-N/C anchored three carrier morphologies were created via a pyrolysis-free approach by covalent organic polymers.

View Article and Find Full Text PDF

Agricultural waste, which is produced in large quantities annually, can be a threat to the environment. Biochar (BC) production represents a potential solution for reducing the amount of grapevine pruning residues and, accordingly, the impact on the environment and climate change. Biochar produced by the process of pyrolysis from grapevine pruning residues was investigated and characterized to be applied as an adsorbent of polyphenolic compounds with the aim of using the waste from viticultural production to obtain a quality product with adsorption and recovery potential.

View Article and Find Full Text PDF

An ultrasensitive dietary caffeic acid electrochemical sensor based on Pd-Ru bimetal catalyst doped nano sponge-like carbon.

Food Chem

November 2023

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan 411105, People's Republic of China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China. Electronic address:

Caffeic acid (CA) is widely present in the human daily diet, and a reliable CA detection method is beneficial to food safety. Herein, we constructed a CA electrochemical sensor employing a glassy carbon electrode (GCE) which was modified by the bimetallic Pd-Ru nanoparticles decorated N-doped spongy porous carbon obtained by pyrolysis of the energetic metal-organic framework (MET). The high-energy bond N-NN in MET explodes to form N-doped sponge-like carbon materials (N-SCs) with porous structures, boosting the adsorptive capacity for CA.

View Article and Find Full Text PDF

Tuning nanozyme property of Co@NC via V doping to construct colorimetric sensor array for quantifying and discriminating antioxidant phenolic compounds.

Biosens Bioelectron

November 2022

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China. Electronic address:

Through VO etching of ZIF-67 and subsequent pyrolysis in an argon flow, the V doped Co@NC (V/Co@NC) with mixed-valence Co(II)/Co(III) and V(III)/V(IV) was successfully obtained. V doping plays an important role in regulating the enzyme-like activity of Co@NC. Specifically, the Co@NC has both oxidase-like activity and peroxidase-mimic activity, while the V/Co@NC possesses the specific oxidase-like activity.

View Article and Find Full Text PDF

Genetic engineering is a powerful tool to steer bio-oil composition towards the production of speciality chemicals such as guaiacols, syringols, phenols, and vanillin through well-defined biomass feedstocks. Our previous work demonstrated the effects of lignin biosynthesis gene modification on the pyrolysis vapour compositions obtained from wood derived from greenhouse-grown poplars. In this study, field-grown poplars downregulated in the genes encoding CINNAMYL ALCOHOL DEHYDROGENASE (), CAFFEIC ACID O-METHYLTRANSFERASE () and CAFFEOYL-CoA O-METHYLTRANSFERASE (), and their corresponding wild type were pyrolysed in a Py-GC/MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!