Download full-text PDF

Source

Publication Analysis

Top Keywords

[changes diurnal
4
diurnal rhythm
4
rhythm mitotic
4
mitotic activity
4
activity convoluted
4
convoluted tubule
4
tubule epithelium
4
epithelium compensatory
4
compensatory regenerative
4
regenerative hypertrophy
4

Similar Publications

Dysregulation of hypothalamic-pituitary-adrenal axis (HPA axis) and of the autonomic nervous system may link stress throughout the life course with poorer health. This study aims to investigate whether multiple adverse childhood experiences have a long-term impact on markers of these systems - cortisol secretion and heart rate variability - in adulthood. Data were from the Whitehall II cohort study.

View Article and Find Full Text PDF

The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice.

View Article and Find Full Text PDF

Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations.

View Article and Find Full Text PDF

The Anoplophora chinensis (Coleoptera: Cerambycidae) (Forster), a serious phytophagous pest threatening Castanea mollissima Blume and Castanea seguinii Dode, poses risks of ecological imbalance, significant economic loss, and increased management difficulties if not properly controlled. This study employs optimized MaxEnt models to analyze the potential distribution areas of A. chinensis and its host plants under current and future climate conditions, identifying their movement pathways and relative dynamics.

View Article and Find Full Text PDF

Climate warming can induce a cost-of-living "squeeze" in ectotherms by increasing energetic expenditures while reducing foraging gains. We used biophysical models (validated by 2685 field observations) to test this hypothesis for 10 ecologically diverse lizards in African and Australian deserts. Historical warming (1950-2020) has been more intense in Africa than in Australia, translating to an energetic squeeze for African diurnal species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!