Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-8993(71)90206-xDOI Listing

Publication Analysis

Top Keywords

compared unitary
4
unitary spontaneous
4
spontaneous evoked
4
evoked activity
4
activity primary
4
primary sensory
4
sensory associative
4
associative areas
4
compared
1
spontaneous
1

Similar Publications

Characterization of motor nerve stimulation using sinusoidal low frequency alternating currents and cuff electrodes.

J Neural Eng

January 2025

Weldon School of Biomedical Engineering, Purdue University, 723 W. Michigan St., Indianapolis, Indiana, 46202, UNITED STATES.

Objective: Direct electrical neurostimulation using continuous sinusoidal low frequency alternating currents (LFAC) is an emerging modality for neuromodulation. As opposed to the traditional rectangular pulse stimulation, there is limited background on the characteristics of peripheral nerves responses to sinusoidal LFAC stimulation; especially within the low frequency range (<50Hz). In this study, we demonstrate LFAC activation as a means to activate motor nerves by direct bipolar nerve stimulation via cuff electrodes, and characterize the factors of activation.

View Article and Find Full Text PDF

In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.

View Article and Find Full Text PDF

Quantum computing presents a promising avenue for solving complex problems, particularly in quantum chemistry, where it could accelerate the computation of molecular properties and excited states. This work focuses on computing excitation energies with hybrid quantum-classical algorithms for near-term quantum devices, combining the quantum linear response (qLR) method with a polarizable embedding (PE) environment. We employ the self-consistent operator manifold of quantum linear response (q-sc-LR) on top of a unitary coupled cluster (UCC) wave function in combination with a Davidson solver.

View Article and Find Full Text PDF

Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.

View Article and Find Full Text PDF

Evaluating Variational Quantum Eigensolver Approaches for Simplified Models of Molecular Systems: A Case Study on Protocatechuic Acid.

Molecules

December 2024

Grupo de Informação Quântica e Física Estatística, Centro de Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, Campus Reitor Edgard Santos, Rua Bertioga, 892, Morada Nobre I, Barreiras 47810-059, BA, Brazil.

The Variational Quantum Eigensolver (VQE) is a hybrid algorithm that combines quantum and classical computing to determine the ground-state energy of molecular systems. In this context, this study applies VQE to investigate the ground state of protocatechuic acid, analyzing its performance with various Ansatzes and active spaces. Subsequently, all VQE results were compared to those obtained with the CISD and FCI methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!