A simple, rapid, and accurate method was developed for measuring intracellular FFA levels in isolated white adipose cells using sucrose-(14)C or inulin carboxyl-(14)C as nontransportable, nonutilizable markers of the extracellular space. Following incubation, medium and cells were separated by centrifugation and the infranatant medium was removed by aspiration. The volume of medium trapped between cells was determined by measuring the amount of sucrose-(14)C or inulin carboxyl-(14)C retained in the floating packed adipose cells. In this way the FFA content of the adipose cells could be corrected for contamination by FFA bound to extracellular albumin. With this technique the initial events in hormone-activated lipolysis were studied under conditions of maximal and constant rates of triglyceride hydrolysis. The FFA content of isolated adipocytes of fed rats was 0.5 micro mole/g cell lipid. On addition of norepinephrine in the presence of medium albumin, the concentration of intracellular FFA rapidly increased and reached a plateau at a concentration of 2-2.5 micro moles/g cell lipid. In the presence of medium albumin an initial lag in glycerol release occurred and this was attributed to partial hydrolysis of triglyceride with retention of lower glycerides. After 5 min of incubation FFA and glycerol output was constant. In the absence of medium albumin norepinephrine-stimulated lipolysis was reduced more than 90% and extracellular FFA release was not detected. Nevertheless, intracellular FFA accumulation was identical to that seen in the presence of albumin. The data suggest that most of this intracellular pool of FFA is bound to cytoplasmic constituents.
Download full-text PDF |
Source |
---|
Nucleic Acids Res
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China.
Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes.
View Article and Find Full Text PDFJ Cell Sci
January 2025
Institute of Molecular Biosciences, University of Graz, Graz, Austria.
White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.
View Article and Find Full Text PDFIn Vitro Model
December 2024
Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.
Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.
View Article and Find Full Text PDFDiabetol Int
January 2025
Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603 Japan.
Type 2 diabetes (T2D) is a polygenic disease, and the development of animal models by selective breeding is crucial for understanding its etiology, pathophysiology, complications, and treatments. We recently developed a new T2D model, the Oikawa-Nagao (ON) mouse, by selectively breeding mice with inferior glucose tolerance [diabetes-prone (ON mouse DP®; ON-DP) strain] and superior glucose tolerance [diabetes-resistant (ON mouse DR®; ON-DR) strain] on a high-fat diet. ON-DP mice are predisposed to develop diabetes and obesity after being fed a high-fat diet, compared to ON-DR mice.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!