To assess the ion transport mechanism by which cholera causes the small bowel to secrete, ion transport rates and electrical potential difference (PD) were determined simultaneously in the normal and choleragen-treated dog ileum in vivo. The results indicate that, during cholera, HCO(3) is actively secreted (i.e., against both an electrical and a concentration gradient); Cl is also actively secreted, against a modest electrochemical gradient. Electrogenic pumping of one or both of these anions is probably responsible for an observed PD change of approximately 13 mv (lumen negative). Na secretion can be accounted for entirely by passive ion movement. K secretion can be partly explained by passive diffusion secondary to the negative intraluminal PD; however, its concentration in the secreted fluid is two to three times higher than expected on the basis of passive forces, suggesting a component of active K secretion. The PD response of the choleragen-treated ileum is normal in response to glucose, but there was no PD response to saline-free mannitol perfusion. This suggests that the normal differential permeability of the ileum to anions and cations may be altered by choleragen, although other explanations of this finding are also possible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC291925 | PMC |
http://dx.doi.org/10.1172/JCI106496 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!