Download full-text PDF |
Source |
---|
Polymers (Basel)
December 2024
Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia.
This study introduces a novel method to enhance the antibacterial functionality of electrospun nanofibrous textiles by integrating silver nanoparticles (AgNPs) into poly (lactic acid) (PLA) fabrics through pre- and post-electrospinning techniques. AgNPs were incorporated into hydrophobic and modified hydrophilic PLA textiles via pre-solution blending and post-solution casting. A PEG-PPG-PEG tri-block copolymer was utilized to enhance hydrophilicity and water stability, while AgNPs served as antibacterial agents.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi 923-1292, Japan.
Polybenzimidazole (PBI) is a high-performance polymer known for its excellent thermal stability, mechanical strength, and chemical resistance, attributes that are derived from its unique structure comprising repeated benzene and imidazole rings. However, limitations such as relatively low thermal stability and moisture sensitivity restrict its application as a super engineering plastic. In this study, amide groups are incorporated into the PBI backbone to synthesize the copolymer poly(BI--A), effecting a structural modification at the molecular level.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Campus Ghent, B-9000 Ghent, Belgium.
The valorization of potato peel side streams for food packaging applications, especially for the substitution of current petrochemical-based oxygen barrier solutions such as EVOH, is becoming increasingly important. Therefore, potato peel-based films and coatings (on PLA) were developed containing 10-50% (/ potato peel) citric acid (CA). To determine the impact of CA concentration on the structure and physicochemical properties of cast films and coatings, ATR-FTIR spectroscopy, moisture adsorption isotherms, tensile properties, light transmittance, oxygen permeability, carbon dioxide transmission rate, and water vapor transmission rate measurements were performed.
View Article and Find Full Text PDFToxics
December 2024
Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, and disruptions in autophagy. Notably, PS-NPs induce multiple forms of cell death, including apoptosis, ferroptosis, necroptosis, and pyroptosis, mediated through distinct yet interconnected molecular pathways.
View Article and Find Full Text PDFMolecules
December 2024
Materia Nova Research Center, UMONS Innovation Center, Avenue Nicolas Copernic 3, B-7000 Mons, Belgium.
In this study, a sustainable cellulose-based flame-retardant additive was developed, characterized, and incorporated into polypropylene (PP). Microcrystalline cellulose (Cel) was chemically modified with PO using the solvent-free ball-milling mechanochemistry approach at room temperature. This modification enabled phosphorus grafting onto cellulose, significantly enhancing the cellulose charring ability and improving the thermal stability of the char as revealed by thermogravimetric analysis (TGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!