Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1695126PMC

Publication Analysis

Top Keywords

evidence western
4
western encephalitis
4
encephalitis infection
4
infection saskatchewan
4
saskatchewan mammals
4
mammals birds
4
birds reindeer
4
reindeer northern
4
northern canada
4
evidence
1

Similar Publications

Association between estrogen and kidney function: population based evidence and mutual bidirectional Mendelian randomization study.

Clin Exp Nephrol

January 2025

Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Background: Previous studies have suggested a potential role of estrogen in the pathophysiology of chronic kidney disease (CKD); however, the association and causality between estrogen and kidney function remain unclear.

Methods: The cross-sectional correlation between serum estradiol concentration and estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR) was analyzed using data from the National Health and Nutrition Examination Survey 2013-2016. Causality was tested using mutual bidirectional Mendelian randomization (MR) approaches based on six large-scale GWAS studies.

View Article and Find Full Text PDF

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Using Zebrafish Models to Study Epitranscriptomic Regulation of CNS Functions.

J Neurochem

January 2025

Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.

Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders.

View Article and Find Full Text PDF

Objective: Our primary objective was to evaluate the safety and feasibility of transcranial direct current stimulation combined with exercise therapy for the treatment of cervicogenic headache. Our exploratory objectives compared symptoms of headache, mood, pain, and quality of life between active and sham transcranial direct stimulation combined with exercise therapy.

Background: Cervicogenic headache arises from injury to the cervical spine or degenerative diseases impacting cervical spine structure resulting in pain, reduced quality of life, and impaired function.

View Article and Find Full Text PDF

Background: Kyasanur forest disease virus (KFDV) is a tick-borne flavivirus causing debilitating and potentially fatal disease in people in the Western Ghats region of India. The transmission cycle is complex, involving multiple vector and host species, but there are significant gaps in ecological knowledge. Empirical data on pathogen-vector-host interactions and incrimination have not been updated since the last century, despite significant local changes in land use and the expansion of KFD to new areas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!