Five soils, representing different locations in Egypt that vary in their climatic conditions, were studied for their nitrifying capacity under different temperature levels. The optimum temperature was 30 degrees C, followed by 20 degrees C. At both temperatures no differences among soils in their nitrifying capacity were observed, and nitrification approached completion after 4 and 6 weeks, respectively. NH4-N osication proceeded at lower rates of 10 degrees and 40 degrees C, but variations among soils in their capacity were observed. At 50 degrees C nitrification took place at fairly high rates in one soil, representing an area characterized by its extreme aridity and high temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0323-6056(79)80076-2DOI Listing

Publication Analysis

Top Keywords

nitrifying capacity
8
degrees degrees
8
capacity observed
8
degrees
5
temperature
4
temperature adaptability
4
adaptability nitrifying
4
nitrifying bacteria
4
soils
4
bacteria soils
4

Similar Publications

Removal of Ampicillin with Nitrifying Cultures in a SBR Reactor.

Appl Biochem Biotechnol

January 2025

Department of Biotechnology-CBS, Metropolitan Autonomous University Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, 09310, Mexico City, Mexico.

The presence of antibiotics in wastewater discharges significantly affects the environment, mainly due to the generation of bacterial populations with multiple antibiotic resistances. The cometabolic capacity of nitrifying sludge to simultaneously remove ammonium (NH) and emerging organic contaminants (EOCs), including antibiotics, has been reported. In the present study, the removal capacity of 50 mg ampicillin (AMP)/L by nitrifying cultures associated with biosorption and biotransformation processes was evaluated in a sequencing batch reactor (SBR) system.

View Article and Find Full Text PDF

Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants.

View Article and Find Full Text PDF

Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater.

Environ Res

December 2024

Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai, 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China. Electronic address:

Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.

View Article and Find Full Text PDF

Hydroponics, despite its potential for efficient crop production, relies heavily on chemical fertilizers derived from nonrenewable resources and thus contributes to environmental burdens and unsustainable use of phosphorus. Integrating hydroponics into a circular phosphorus economy is crucial for mitigating these impacts. This study quantitatively assessed the capacity of filtrates from nitrified biogas digestate (f-NBD), a nutrient solution derived from organic waste, to replace phosphorus and nitrogen in hydroponic chemical nutrient solutions.

View Article and Find Full Text PDF

Biotransformation of microplastics from three-layer face masks by nitrifying-denitrifying consortia.

J Hazard Mater

December 2024

Instituto Potosino de Investigación Científica y Tecnológica A.C., División de Ciencias Ambientales, Camino a la Presa San José 2055, Lomas 4a Sección, C.P. 78216, San Luis Potosí, Mexico. Electronic address:

COVID-19 increased microplastics (MP) contamination due to the extensive use of single-use personal protective equipment, particularly three-layer face masks. MP from face masks enter wastewater treatment plants (WWTPs), which were not designed to remove them. We utilized nitrifying-denitrifying microbial consortia and synthetic urban wastewater to evaluate the biotransformation of MP from each layer of three-layer face masks made of polypropylene (PP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!