Download full-text PDF |
Source |
---|
Fluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Intensive Care Medicine, No. 971st Hospital of the People's Liberation Army Navy, Qingdao, Shandong Province, PR China.
Background: Ursodeoxycholic acid (UDCA), traditionally recognized for its hepatoprotective effects, has also shown potential in protecting kidney injury. This study aimed to evaluate the protective effects of UDCA against sepsis-induced acute kidney injury (AKI) and to elucidate the underlying mechanisms.
Methods: Sixty male C57BL/6 N mice were utilized to establish a sepsis-induced AKI model through intravenous injection of lipopolysaccharides (LPS, 10 mg/kg).
EBioMedicine
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; National Center for Neurological Disorders, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing, China. Electronic address:
Background: Central nervous system (CNS) accessibility constitutes a major hurdle for drug development to treat neurological diseases. Existing drug delivery methods rely on breaking the blood-brain barrier (BBB) for drugs to penetrate the CNS. Researchers have discovered natural microchannels between the skull bone marrow and the dura mater, providing a pathway for drug delivery through the skull bone marrow.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!