Two strains of Saccharomycopsis guttulata, JB-1 and JB-3, isolated from stomach contents of domestic rabbits, were grown under different gas phases, and their growth rates were compared. Strain JB-1 grew exponentially at a maximal growth rate under a continuous gas phase of 15% CO(2), 2% O(2) in nitrogen. High cell yields with low cell granulation were obtained. The growth rates were almost the same between oxygen concentrations of 0.25 and 20% at 15% CO(2). Poor growth and early cell granulation occurred in the absence of oxygen at 15% CO(2). Growth increased at 2% O(2) in direct proportion to the carbon dioxide concentration up to 10 to 15% CO(2). A very high carbon dioxide content (e.g. 98%) was somewhat inhibitory. Cell granulation always occurred during the maximal stationary phase in media at pH 4, but was relatively slight at pH 5.6 or higher. Strain JB-3 responded to various gas phases in a similar manner except that it grew slowly in the absence of oxygen at 15% CO(2) (pH 4). The effect of an optimal gas phase on the growth of strain JB-1 was examined in relation to other environmental conditions. In the presence of 15% CO(2), 2% O(2), this strain grew exponentially in yeast autolysate-Proteose Peptone-glucose medium at 37 C at pH 2, 4, and 5.6 at approximately the same rate; the growth rate was somewhat lower at pH 6.2. Under similar conditions, strain JB-1 grew at 30 C and pH 4 at one-sixth its maximal growth rate. Cell granulation was greatly reduced at this temperature. With adequate CO(2) strain JB-1 also grew at a reduced rate in a yeast autolysate medium previously reported not to support growth. Results indicate that continuous gassing with an optimal gas phase increases the growth rate to the extent that the growth rate surpasses the death rate by a significant margin; as a result, granulated cells can be avoided almost entirely in the log phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC248192PMC
http://dx.doi.org/10.1128/jb.104.1.133-137.1970DOI Listing

Publication Analysis

Top Keywords

15% co2
24
growth rate
20
strain jb-1
16
cell granulation
16
growth
12
jb-1 grew
12
gas phase
12
continuous gassing
8
gas phases
8
growth rates
8

Similar Publications

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

The utilization of carbide slag, an industrial by-product, as a resource to prepare value-added products has a profound impact not only for sustainable synthesis and the circular economy but also for CO reduction. Herein, we report the very first example of the controlled multi-dimensional assembly of calcium carbonate particles at the micrometer scale with industrial by-product carbide slag and CO. Calcium carbonate particles of distinctly different sizes, shapes, and morphologies are obtained by finely tuning the assembly conditions.

View Article and Find Full Text PDF

Pre-Melting-Assisted Impurity Control of β-GaO Single Crystals in Edge-Defined Film-Fed Growth.

Nanomaterials (Basel)

December 2024

Division of Nanotechnology and Semiconductor Engineering, Pukyong National University, Busan 49315, Republic of Korea.

This study reveals the significant role of the pre-melting process in growing high-quality (100) β-GaO single crystals from 4N powder (99.995% purity) using the edge-defined film-fed growth (EFG) method. Among various bulk melt growth methods, the EFG method boasts a fast growth rate and the capability of growing multiple crystals simultaneously, thus offering high productivity.

View Article and Find Full Text PDF

Pressure regulated CO electrolysis on two-dimensional BiOSe.

Chem Commun (Camb)

January 2025

Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.

The electrochemical reduction of carbon dioxide (CORR) offers potential for sustainable production and greenhouse gas mitigation, particularly with renewable energy integration. However, its widespread application is hindered by expensive catalysts, low selectivity, and limited current density. This study addresses these challenges by developing a low-mass-loading two-dimensional (2D) BiOSe catalyst chemical vapor deposition (CVD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!