Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/100.5.551DOI Listing

Publication Analysis

Top Keywords

water restriction
4
restriction nitrogen
4
nitrogen metabolism
4
metabolism bovine
4
bovine fed
4
fed levels
4
levels nitrogen
4
nitrogen
2
water
1
metabolism
1

Similar Publications

Magnesium (Mg) is essential for life, and low levels impair immune function, promote chronic inflammation, and influence the intestinal microbiome, with the peritoneal cavity serving as a site for direct interaction between the cavity and intestinal contents, including the microbiota. This study investigates the effects of a Mg-restricted diet on peritoneal immune cells and its interplay with the intestinal microbiome. Male C57BL/6NTaq mice were divided into three groups: control, restricted, and restored.

View Article and Find Full Text PDF

First report of causing leaf spot of (Magnoliaceae) in China.

Plant Dis

January 2025

Huainan Normal University, School of Bioengineering, Dongshan West Road, Huainan City, Huainan, China, 232038;

Manglietia decidua is an extremely endangered species, known for its limited population and a narrow distribution range restricted to China (Yu 1994). In October 2021, a leaf disease affecting the foliage of 3-year-old M. decidua was observed at the nursery garden of the Yichun Forestry Institute of Jiangxi Province (27°55'52.

View Article and Find Full Text PDF

Oxygen Activation Biocatalytic Precipitation Strategy Based on a Bimetallic Single-Atom Catalyst for Photoelectrochemical Biosensing.

Anal Chem

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.

Article Synopsis
  • The traditional biocatalytic precipitation (BCP) method has limitations due to HO's tendency to self-decompose, affecting its effectiveness in quantitative analysis.
  • Researchers discovered that a bimetallic single-atom catalyst (Co/Zn-N-C SAC) can activate dissolved oxygen to create reactive oxygen species, leading to improved detection methods.
  • The development of a new oxygen-activated photoelectrochemical (PEC) biosensor for chloramphenicol (CAP) detection demonstrates enhanced stability and accuracy by using Co/Zn-N-C SAC and cesium platinum bromide nanocrystals (CsPtBr NCs) without needing external reactants.
View Article and Find Full Text PDF

The evolution of oxygenic photosynthesis in the Cyanobacteria was one of the most transformative events in Earth history, eventually leading to the oxygenation of Earth's atmosphere. However, it is difficult to understand how the earliest Cyanobacteria functioned or evolved on early Earth in part because we do not understand their ecology, including the environments in which they lived. Here, we use a cutting-edge bioinformatics tool to survey nearly 500,000 metagenomes for relatives of the taxa that likely bookended the evolution of oxygenic photosynthesis to identify the modern environments in which these organisms live.

View Article and Find Full Text PDF

Integrated analysis of transcriptome, sRNAome, and degradome involved in the drought-response of maize Zhengdan958.

Open Life Sci

January 2025

Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China.

Drought is a major abiotic stress in restricting the growth, development, and yield of maize. As a significant epigenetic regulator, small RNA also functions in connecting the transcriptional and post-transcriptional regulatory network. Further to help comprehending the molecular mechanisms underlying drought adaptability and tolerance of maize, an integrated multi-omics analysis of transcriptome, sRNAome, and degradome was performed on the seedling roots of an elite hybrid Zhengdan958 under drought stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!