[Artificial materials in functional middle ear surgery].

Monatsschr Ohrenheilkd Laryngorhinol

Published: March 1970

Download full-text PDF

Source

Publication Analysis

Top Keywords

[artificial materials
4
materials functional
4
functional middle
4
middle ear
4
ear surgery]
4
[artificial
1
functional
1
middle
1
ear
1
surgery]
1

Similar Publications

While silk fibroin (SF) obtained from silkworm cocoons is expected to become a next-generation natural polymer, a fabrication method for SF-based artificial nerve conduits (SFCs) has not yet been established. Here, we report a bioresorbable SFC, fabricated using a novel freeze-thaw process, which ensures biosafety by avoiding any harmful chemical additives. The SFC demonstrated favorable biocompatibility (high hydrophilicity and porosity with a water content of > 90%), structural stability (stiffness, toughness, and elasticity), and biodegradability, making it an ideal candidate for nerve regeneration.

View Article and Find Full Text PDF

The expansion of LEAN and small batch manufacturing demands flexible automated workstations capable of switching between sorting various wastes over time. To address this challenge, our study is focused on assessing the ability of the Segment Anything Model (SAM) family of deep learning architectures to separate highly variable objects during robotic waste sorting. The proposed two-step procedure for generic versatile visual waste sorting is based on the SAM architectures (original SAM, FastSAM, MobileSAMv2, and EfficientSAM) for waste object extraction from raw images, and the use of classification architecture (MobileNetV2, VGG19, Dense-Net, Squeeze-Net, ResNet, and Inception-v3) for accurate waste sorting.

View Article and Find Full Text PDF

All-perovskite tandem solar cells (APTSCs) offer the potential to surpass the Shockley-Queisser limit of single-junction solar cells at low cost. However, high-performance APTSCs contain unstable methylammonium (MA) cation in the tin-lead (Sn-Pb) narrow bandgap subcells. Currently, MA-free Sn-Pb perovskite solar cells (PSCs) show lower performance compared with their MA-containing counterparts.

View Article and Find Full Text PDF

Robotic artificial muscles, inspired by the adaptability of biological muscles, outperform rigid robots in dynamic environments due to their flexibility. However, the intrinsic compliance of the soft actuators restricts force transmission capacity and dynamic response. Biological muscle modulates their stiffness and damping, varying viscoelastic properties and force in interaction with the surroundings.

View Article and Find Full Text PDF

Thermal-Sensitive Artificial Ionic Skin with Environmental Stability and Self-Healing Property.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.

Wearable temperature-sensitive electronic skin enables robots to rapidly detect environmental changes and respond intelligently, thereby reducing temperature-related mechanical failures. Additionally, this temperature-sensitive skin can measure and record the temperature of external objects, broadening its potential applications in the medical field. In this study, we designed a thermally sensitive artificial ionic skin using ionic liquids (ILs) as solvents and carbon nanotubes (CNTs) as thermally conductive fillers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!