Download full-text PDF

Source
http://dx.doi.org/10.1248/yakushi1947.89.12_1673DOI Listing

Publication Analysis

Top Keywords

[studies basicities
4
basicities aminotropone
4
aminotropone aminotropolone
4
aminotropolone derivatives]
4
[studies
1
aminotropone
1
aminotropolone
1
derivatives]
1

Similar Publications

Nitrogen Enriched Tröger's Base Polymers of Intrinsic Microporosity for Heterogeneous Catalysis.

ACS Appl Polym Mater

January 2025

Department of Chemistry, Faculty of Science and Engineering, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, U.K.

Heterogeneous catalysis is significantly enhanced by the use of highly porous polymers with specific functionalities, such as basic groups, which accelerate reaction rates. Polymers of intrinsic microporosity (PIMs) provide a unique platform for catalytic reactions owing to their high surface areas and customizable pore structures. We herein report a series of Tröger's base polymers (TB-PIMs) with enhanced basicity, achieved through the incorporation of nitrogen-containing groups into their repeat units, such as triazine and triphenylamine.

View Article and Find Full Text PDF

Low-temperature catalytic oxidation of ethanol over doped nickel phosphates.

Environ Sci Pollut Res Int

January 2025

Laboratory of Coordination and Analytical Chemistry (LCCA), Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, Ben Maachou Road, B.P: 20, 24000, El Jadida, Morocco.

This work is focused on the synthesis and performance of Ni(PO)-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH-TPD, CO-TPD, and H-TPR to explain their performance.

View Article and Find Full Text PDF

Lipophilicity and acidity/basicity are fundamental physical properties that profoundly affect the compound's pharmacological activity, bioavailability, metabolism, and toxicity. Predicting lipophilicity, measured by (1-octanol-water distribution coefficient logarithm), and acidity/basicity, measured by (negative of acid ionization constant logarithm), is essential for early drug discovery success. However, the limited availability of experimental data and poor accuracy of standard and assessment methods for saturated fluorine-containing derivatives pose a significant challenge to achieving satisfactory results for this compound class.

View Article and Find Full Text PDF

The effective use of polymer carbon dots (PCD) in various fields of science and technology requires a more detailed understanding of the mechanisms of their photoluminescence formation and change as a result of their interaction with the environment. In this study, PCD synthesized via a hydrothermal method from citric acid and ethylenediamine are studied in various solvents using FTIR spectroscopy, optical absorption spectroscopy, and photoluminescence spectroscopy. As a result of the analysis of the obtained dependencies of such PCD spectral characteristics as the photoluminescence FWHM, the photoluminescence quantum yield, the photoluminescence lifetime on the acidity and basicity of the solvent, a hypothesis was formulated on the formation mechanism of hydrogen bonds between the PCD surface groups and the molecules of the environment, and conclusions were made about the donor-acceptor nature of the synthesized PCD.

View Article and Find Full Text PDF

Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!