Download full-text PDF

Source

Publication Analysis

Top Keywords

[complex mesenchymal
4
mesenchymal dysplasia
4
dysplasia arterial
4
arterial type
4
type sack-barabas
4
sack-barabas ehlers-danlos
4
ehlers-danlos syndrome?
4
syndrome? clinical
4
clinical ultrastructural
4
ultrastructural discussion]
4

Similar Publications

3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

Adv Sci (Weinh)

January 2025

Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling.

View Article and Find Full Text PDF

Purpose: Treatment of severe burn wound injury remains a significant clinical challenge as serious infections/complex repair process and irregulating inflammation response. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have a multidirectional differentiation potential and could repair multiple injuries under appropriate conditions. Poly(L-lysine)-graft-4-hydroxyphenylacetic acid (PLL-g-HPA) hydrogel is an enzyme-promoted biodegradable in hydrogel with good water absorption, biocompatibility and anti-bacterial properties.

View Article and Find Full Text PDF

Treatment of Denervated Muscle Atrophy by Injectable Dual-Responsive Hydrogels Loaded with Extracellular Vesicles.

Adv Sci (Weinh)

January 2025

Department of Orthopedics, Shanghai Tenth People's Hospital School of Medicine, Tongji University, Shanghai, 200072, China.

Denervated muscle atrophy, a common outcome of nerve injury, often results in irreversible fibrosis due to the limited effectiveness of current therapeutic interventions. While extracellular vesicles (EVs) offer promise for treating muscle atrophy, their therapeutic potential is hindered by challenges in delivery and bioactivity within the complex microenvironment of the injury site. To address this issue, an injectable hydrogel is developed that is responsive to both ultrasound and pH, with inherent anti-inflammatory and antioxidant properties, designed to improve the targeted delivery of stem cell-derived EVs.

View Article and Find Full Text PDF

Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.

View Article and Find Full Text PDF

Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Front Cell Dev Biol

January 2025

Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!