Download full-text PDF |
Source |
---|
Front Immunol
January 2025
Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilan-Universität (LMU) Munich, München, Germany.
Introduction: The autoantibody-driven disease pemphigus vulgaris (PV) impairs desmosome adhesion in the epidermis. In desmosomes, the pemphigus autoantigens desmoglein 1 (Dsg1) and Dsg3 link adjacent cells. Dsgs are clustered by plaque proteins and linked to the keratin cytoskeleton by desmoplakin (Dp).
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
Mannan and β-(1→3)-glucan are two polysaccharide markers that are characteristic for a number of fungal pathogens, including , which is the most common cause of invasive mycoses in humans. In this study, we examined epitope specificity of two monoclonal antibodies, CM532 and FG70, which recognize certain oligosaccharide fragments of these fungal polysaccharides. Using a panel of biotinylated oligosaccharides as coating antigens, we found that the CM532 antibody obtained by immunization with the pentamannoside β-Man-(1→2)-β-Man-(1→2)-α-Man-(1→2)-α-Man-(1→2)-α-Man KLH conjugate, selectively recognizes the trisaccharide β-Man-(1→2)-α-Man-(1→2)-α-Man epitope.
View Article and Find Full Text PDFViruses
January 2025
School of Public Health, Bengbu Medical University, Bengbu 233030, China.
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!