Download full-text PDF

Source

Publication Analysis

Top Keywords

[identification enteropathogenic
4
enteropathogenic escherichia
4
escherichia coli
4
coli immunofluorescence
4
immunofluorescence methods
4
methods rapid
4
rapid identification
4
identification experimentally
4
experimentally infected
4
infected fecal
4

Similar Publications

Unlabelled: Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.

View Article and Find Full Text PDF

Background: Accurate and comprehensive identification of enteropathogens, causing infectious gastroenteritis, is essential for optimal patient treatment and effective isolation processes in health care systems. Traditional diagnostic techniques are well established and optimised in low-cost formats. However, thorough testing for a wider range of causal agents is time consuming and remains limited to a subset of pathogenic organisms.

View Article and Find Full Text PDF

Prevalence of , and spp. in diarrhoeic suckling calves from north-western Spain and analysis of their interactions.

Int J Vet Sci Med

January 2025

Galicia (Grupo INVESAGA). Departamento de Patología Animal. Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain, Investigación en Sanidad Animal.

Although , and some species are frequently involved in neonatal calf diarrhoea (NCD), detailed studies on their interactions are scarce. Therefore, a cross-sectional study including faecal samples from 404 diarrhoeic calves aged 0-30 days was performed. oocysts and cysts were detected by immunofluorescence antibody test and positive samples were molecularly characterized.

View Article and Find Full Text PDF

Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.

Vet Res

January 2025

Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.

View Article and Find Full Text PDF

Evaluation of MALDI-TOF for identification of Vibrio cholerae and Vibrio parahaemolyticus from growth on agar media.

Appl Microbiol Biotechnol

January 2025

Vibrio Reference Laboratory, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada.

Two methods were compared for their ability to accurately identify Vibrio species of interest: whole genome sequencing as the reference method and MALDI-TOF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) proteome fingerprinting. The accuracy of mass spectrometry-based identification method was evaluated for its ability to accurately identify isolates of Vibrio cholerae and Vibrio parahaemolyticus. Identification result of each isolate obtained by mass spectrometry was compared to identification by whole genome sequencing (WGS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!