Download full-text PDF |
Source |
---|
ACS Chem Biol
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
Conventional small-molecule drugs primarily operate by inhibiting protein function, but this approach is limited when proteins lack well-defined ligand-binding pockets. Targeted protein degradation (TPD) offers an alternative approach by harnessing cellular degradation pathways to eliminate specific proteins. Recent studies have expanded the potential of TPD by identifying additional E3 ligases, with DCAF16 emerging as a promising candidate for facilitating protein degradation through both proteolysis-targeting chimera (PROTAC) and molecular glue mechanisms.
View Article and Find Full Text PDFAs natural furocoumarins, psoralen and its isomer isopsoralen are widely distributed in various fruits including L., vegetables including celery, and medicinal herbs including L. Although psoralen and isopsoralen have been used as dietary supplements because of their bioactivities such as antibacterial and anti-inflammatory properties; however, the potential mechanisms underlying the antioxidant activities of these two furocoumarins still need to be explored.
View Article and Find Full Text PDFSci Adv
January 2025
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Revealing the momentum-resolved electronic structure of infinite-layer nickelates is essential for understanding this class of unconventional superconductors but has been hindered by the formidable challenges in improving the sample quality. In this work, we report the angle-resolved photoemission spectroscopy of superconducting LaSrNiO films prepared by molecular beam epitaxy and in situ atomic-hydrogen reduction. The measured Fermi topology closely matches theoretical calculations, showing a large Ni [Formula: see text]-derived Fermi sheet that evolves from hole-like to electron-like along and a three-dimensional (3D) electron pocket centered at the Brillouin zone corner.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of California Berkeley, Chemistry, UNITED STATES OF AMERICA.
Understanding the chemistry of the inert actinide oxo bond in actinyl ions AnO22+ is important for controlling actinide behavior in the environment, during separations, and in nuclear waste (An = U, Np, Pu). The thioether calixarene TC4A (4-tert-butyltetrathiacalix[4]arene) binds equatorially to [AnO2]n+ (An = U, Np) forming a conical pocket that differentiates the two trans-oxo groups. The 'ate' complexes, [A]2[UO2(TC4A)] (A = [Li(DME)2], HNEt3) and [HNEt3]2[NpO2(TC4A)], enable selective oxo chemistry.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
U6 snRNA (small nuclear ribonucleic acid) is a ribozyme that catalyzes pre-messenger RNA (pre-mRNA) splicing and undergoes epitranscriptomic modifications. After transcription, the 3'-end of U6 snRNA is oligo-uridylylated by the multi-domain terminal uridylyltransferase (TUTase), TUT1. The 3'- oligo-uridylylated tail of U6 snRNA is crucial for U4/U6 di-snRNP (small nuclear ribonucleoprotein) formation and pre-mRNA splicing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!