Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9969(71)90083-5DOI Listing

Publication Analysis

Top Keywords

afferent discharges
4
discharges temporomandibular
4
temporomandibular articular
4
articular mechanoreceptors
4
mechanoreceptors experimental
4
experimental analysis
4
analysis behavioural
4
behavioural characteristics
4
characteristics cat
4
afferent
1

Similar Publications

Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.

Cells

January 2025

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.

While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.

View Article and Find Full Text PDF

A single exposure to prolonged flexor carpi radialis muscle vibration increases sensorimotor cortical areas activity.

J Neurophysiol

January 2025

Laboratoire Interuniversitaire de Biologie de la Motricité, Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Saint-Etienne, France.

Prolonged local vibration (LV) is thought to promote brain plasticity through repeated Ia afferents discharge. However, the underlying mechanisms remain unclear. This study therefore aimed at determining the acute after-effects of 30-min LV of the flexor carpi radialis muscle (FCR) on sensorimotor (S1, M1) and posterior parietal cortex (PPC) areas activity.

View Article and Find Full Text PDF

Alterations in mitochondrial function are the linchpin in numerous disease states including in the development of chemotherapy-induced neuropathic pain (CIPN), a major dose-limiting toxicity of widely used chemotherapeutic cytotoxins. In CIPN, mitochondrial dysfunction is characterized by deficits in mitochondrial bioenergetics (e.g.

View Article and Find Full Text PDF

Activation of mouse skin mast cells and cutaneous afferent C-fiber subtypes by bee venom.

Neurosci Lett

January 2025

Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir, Baltimore, MD 21224, USA. Electronic address:

In mammals, many Hymenopteran stings are characterized by pain, redness, and swelling - three manifestations consistent with nociceptive nerve fiber activation. The effect of a Western honeybee (Apis mellifera) venom on the activation of sensory C-fibers in mouse skin was studied using an innervated isolated mouse skin preparation that allows for intra-arterial delivery of chemicals to the nerve terminals in the skin. Our data show that honeybee venom stimulated mouse cutaneous nociceptive-like C-fibers, with an intensity (action potential discharge frequency) similar to that seen with a maximally-effective concentration of capsaicin.

View Article and Find Full Text PDF
Article Synopsis
  • In patients with unilateral vestibular loss (UVL), vibrations can trigger a response known as vibration-induced nystagmus (VIN), where eye movements are directed toward the affected ear due to imbalances in signals from the vestibular system.
  • A study employed a neural network model to hypothesize that the brain could misinterpret head orientation during vibration, leading to additional "virtual" translational effects; this means the angle of the head relative to gravity would affect the VIN response.
  • The research confirmed the hypothesis through experiments with three patients, showing the expected patterns of VIN based on head positions, indicating that VIN could help identify subtle vestibular imbalances when other signs are unclear.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!