An effect of postsynaptic neurons upon presynaptic terminals.

Proc Natl Acad Sci U S A

Published: May 1969

Centrifugal ("antidromic") discharges in cat sensory fibers are observed consistently in a variety of experimental preparations and with many different surgical and recording techniques. As is well known, they can be either "spontaneous" or induced by afferent volleys in other sensory fibers. In addition, it is shown here that they can be elicited by antidromic motoneuron activation when the latter is conditioned by natural sensory stimuli or by shocks to the dorsal roots. The latency of the centrifugal dorsal root response to ventral root stimulation is shorter than that of the monosynaptic reflex mediated by the same fibers. An "antidromic" coupling, probably of an electrical nature, between motoneurons and presynaptic terminals is postulated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534034PMC
http://dx.doi.org/10.1073/pnas.63.1.58DOI Listing

Publication Analysis

Top Keywords

presynaptic terminals
8
sensory fibers
8
postsynaptic neurons
4
neurons presynaptic
4
terminals centrifugal
4
centrifugal "antidromic"
4
"antidromic" discharges
4
discharges cat
4
cat sensory
4
fibers observed
4

Similar Publications

Background And Objectives: Autoantibodies (aAbs) against glycine receptors (GlyRs) are mainly associated with the rare neurologic diseases stiff person syndrome (SPS) and progressive encephalomyelitis with rigidity and myoclonus (PERM). GlyR aAbs are also found in other neurologic diseases such as epilepsy. The aAbs bind to different GlyR α-subunits and, more rarely, also to the GlyR β-subunit.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

25-Hydroxycholesterol modulates synaptic vesicle endocytosis at the mouse neuromuscular junction.

Pflugers Arch

January 2025

Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.

Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!